Enhancing Spatial Reasoning Capability Using VR Immersive Experience

SHENG-MING WANGDAI YU XUANPHAN MINH NHANCHEN CHUN CHIEHDANG MY LINHLIN SHAO YING

DEPARTMENT OF INTERACTION DESIGN NATIONAL TAIPEI UNIVERSITY OF TECHNOLOGY

22nd Mar, 2023

Contact | Phan Minh Nhan | Minhnhan.ph@gmail.com

RESEARCH OUTLINE

RESEARCH Introduction

RESEARCH Motivations Contributions Objectives

RESEARCH Hypothesis

RESEARCH OUTLINE

RESEARCH Methodology

RESEARCH
Discussion
& Future work

Introduction

"A cognitive skill that enables individuals to **mentally perceive** and **manipulate objects**." (Carroll, 1993; Salzman et al., 1999)

"The ability to **generate, retain, retrieve**, and **transform** wellstructured visual images", allows people to understand and reason about the relations among objects in three or two dimensions, interpret their surrounding 3D world, and affect their spatial task performances in large-scale environments"

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies (No. 1). Cambridge University Press. Salzman, M. C., Dede, C., Loftin, R. B., & Chen, J. (1999). A model for understanding how virtual reality aids complex conceptual learning. Presence Teleoperators and Virtual Environments, 8, 293–316.

Related Fields

Research Problems

- The insufficient emphasis in the educational system.
- The lack of research to determine the most effective teaching method.
- The difficulties in 3D visualization.

Research Problems

Research Assumptions

Learning in a virtual environment may contribute to improve performance on spatial reasoning tasks, and higher levels of immersion may be associated with stronger gains. (Parong et al., 2020).

Parong, J., Pollard, K. A., Files, B. T., Oiknine, A. H., Sinatra, A. M., Moss, J. D., ... & Khooshabeh, P. (2020). The mediating role of presence differs across types of spatial learning in immersive technologies. Computers in Human Behavior, 107, 106290. Research Motivations Learning spatial reasoning in multi-discipline fields.A novel application to learn spatial concepts.

Research Contributions Learners' feedbacks in multi-dimensions - > VR - learners' immersion - emotional arousal - learning performance.

Research Objectives The effectiveness of VR in enhancing spatial reasoning skills.
Factors affecting learning performance of spatial reasoning through VR.

Research Hypothesis

Hypothesis: VR can help improve spatial reasoning's learning performance.

Learning performance: the achievement of a learning activity. It includes two aspects: the result and the process. Moccozet, L (2012) Moccozet, L. (2012, July). Introducing learning performance in personal learning environments. In 2012 IEEE 12th International Conference on Advanced Learning Technologies (pp. 702-703). IEEE.

Research Framework

Phase A: Background Research

Phase B: Pilot Study

- Research background
- Set up goals and motivations
- Establish research hypothesis
- Literature Review
- Coming up methodology

 VR experience

 Immer Emotional

 sion
 Arousal

 ITQ
 GSR

 MSLQ
 Interview

- VR in learning spatial reasoning
- Emotional arousal in VR
- Immersion in VR
- Emotional arousal and learning performance

- Phase C: Evaluation and Conclusion
- Analyze results
- Future Work

Conclusion

Research Methodology

01. User Interview

02. Questionnaire

03.

Galvanic Skin Response

- Learners' subjective feelings.
- Pain-points with the two drawing methods.

- Immersive assessment scale.
- Learning performance scale.

- Learners' emotional arousal.
- Supporting the impact of immersion on learning performance.

Tool Support

Gravity Sketch is the application offering users a platform to be creative in VR environment.

Experimental Process

Phase 1

Traditional Drawing

(GSR sensor)

VR Drawing

(GSR sensor)

Questionnaire

(Immersion & Learning performance in VR)

- Word Cloud
- Co-occurrence networks

Phase 2

Traditional Drawing (GSR sensor)

Interview

- Data visualization
- Wilcoxon Signed Rank Test

Descriptive statistics

Experimental Process

Participants Demographics

Phase I Experiment

Traditional Drawing Before and After VR Immersion

Traditional Drawing Before and After VR Immersion

Word Cloud Analysis on Interview Results

- Minimum frequency : 8
- Eliminated words :
- VR/Traditional drawing
- Preposition pronoun
- Transition
- Definite article

Text Co-occurrence Networks Analysis

- "Make", "shape", "different" connect with VR via "easier".
- **"Tool", "learn", "perspective"** connect with VR via "**use**".

Participants' Interview Analysis I

- Design background -> Prefer VR
- Non-Design background -> Not familiar with VR -> Prefer VR
- Only one person who is non-design background prefers hand drawing more. (Age > 30 yrs old, experience > 5yrs)

GSR Sensor Data Analysis I

Learner 2: Design, Familiar with VR

- Traditional drawing before using VR
- Traditional drawing after using VR

Learner 3: Non-Design, Unfamiliar with VR

GSR Sensor Data Analysis III

Unfamiliar with 3D, same background

Learner 4: Non-Design, Familiar with VR

Traditional drawing before using VR

Traditional drawing after using VR

Learner 8: Non-Design, Unfamiliar with VR

GSR Sensor Data Analysis IV

Unfamiliar with 3D, different background

- Traditional drawing before using VR
- Traditional drawing after using VR

Learner 8 : Non-Design, Unfamiliar with VR

Learner 6: Design, Familiar with VR

GSR Sensor Data Analysis V

Familiar with 3D, different background

Learner 3 : Non-Design, Unfamiliar with VR

Traditional drawing after using VR

Learner 7: Design, Familiar with VR

Traditional drawing before using VR

Research Results and Discussion I

GSR Data

The Immersive Tendency Questionnaire (ITQ)

Test Statistics^a

	Traditional2_Total - Traditional1_Total		
Z		11.110 ^b	
Asymp. Sig. (2-tailed)		.000	

a. Wilcoxon Signed Ranks Test

b. Based on negative ranks.

Significant difference in the emotional arousal level.

Item Statistics

	Mean	Std. Deviation	N
I1. I felt stimulated by the virtual environment.	7.70	1.636	10
I2. I become so involved in the virtual environment that I was not aware of things happening around me.	7.60	2.171	10
I3. I identified to the character I played in the virtual environment.	7.40	1.265	10
I4. I become so involved in the virtual environment that it is if I was inside the game rather than manipulating a gamepad and watching a screen.	7.70	2.263	10
I5. I felt physically fit in the virtual environment.	6.80	2.044	10
I6. I got scared by something happening in the virtual environment.	4.70	3.302	10
I7. I become so involved in the virtual environment that I lose all track of time.	6.80	2.098	10

Research Results and Discussion II

GSR Data

The Immersive Tendency Questionnaire (ITQ)

Test Statistics^a

	Traditional2_Total - Traditional1_Total		
Z	-	11.110 ^b	
Asymp. Sig. (2-tailed)		.000	

a. Wilcoxon Signed Ranks Test

b. Based on negative ranks.

Significant difference in the emotional arousal level.

Item Statistics

	Mean	Std. Deviation	N
I1. I felt stimulated by the virtual environment.	7.70	1.636	10
I2. I become so involved in the virtual environment that I was not aware of things happening around me.	7.60	2.171	10
I3. I identified to the character I played in the virtual environment.	7.40	1.265	10
I4. I become so involved in the virtual environment that it is if I was inside the game rather than manipulating a gamepad and watching a screen.	7.70	2.263	10
I5. I felt physically fit in the virtual environment.	6.80	2.044	10
I6. I got scared by something happening in the virtual environment.	4.70	3.302	10
I7. I become so involved in the virtual environment that I lose all track of time.	6.80	2.098	10

"I feel stimulated by the virtual environment" (7.7, SD = 1.636)

"I identified the character I played in the virtual environment" (7.4, SD = 1.265) $_{31}$

MSLQ – Questionnaire Analysis I

Motivated Strategies for Learning Questionnaire

Reliability Statistics

Item	Statis	tics
------	--------	------

Cronbach's	Cronbach's Alpha Based on Standardized	
Alpha	Items	N of Items
. 788	.800	3

	Mean	Std. Deviation	Ν
Self_Efficacy_VR	6.2333	1.29624	10
Intrinsic_Value_VR	6.7500	.88976	10
Interest_and_Motivation_VR	6.9500	1.03950	10

Summary Item Statistics

	Mean	Minimum	Maximum	Range	Maximum / Minimum	Variance	N of Items
Item Means	6.644	6.233	6.950	.717	1.115	.137	3

MSLQ – Questionnaire Analysis II

Motivated Strategies for Learning Questionnaire

Reliability Statistics

nbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.788	. 800	3

Item Statistics

The reliability is acceptable (0.788).

Summary Item Statistics

MSLQ – Questionnaire Analysis III

Motivated Strategies for Learning Questionnaire

VR can improve interest and motivation in learning spatial reasoning (6.95, SD = 1.03950).

Item Statistics

Mean

6.2333

6.7500

6.9500

Std. Deviation

1.29624

1.03950

.88976

The average value of this	Intrinsic_Value_VR
survey is 6.644, which is	Interest_and_Motivation_VR
relatively good.	

Summary Item Statistics

Self_Efficacy_VR

	N	lean	Minimum	Maximum	Range	Maximum / Minimum	Variance	N of Items
Item Means		6.644	6.233	6.950	.717	1.115	.137	3

Ν

10

10

10

MSLQ – Questionnaire Analysis IV

Motivated Strategies for Learning Questionnaire

Reliability Statistics

Item	Statistics
------	------------

	Cronbach's Alpha Based on	
Cronbach's Alpha	Standardized Items	N of Items
.788	.800	3

	Mean	Std. Deviation	Ν
Self_Efficacy_VR	6.2333	1.29624	10
Intrinsic_Value_VR	6.7500	.88976	10
Interest_and_Motivation_VR	6.9500	1.03950	10

Summary Item Statistics

	Mean	Minimum	Maximum	Range	Maximum / Minimum	Variance	N of Items
Item Means	6.644	6.233	6.950	.717	1.115	.137	3

0

"I think I would choose VR to learn. It is really hard to picture what really happens in your mind. But with the help of VR, I think it is more helpful for us. We know the simulation of what is going to happen." - Learner 1

MSLQ – Questionnaire Analysis V

Motivated Strategies for Learning Questionnaire

	Item S	Statistics		
		Mean	Std. Deviation	N
	Self_Efficacy_VR	6.2333	1.29624	10
	Intrinsic_Value_VR	6.7500	.88976	10
	Interest_and_Motivation_VR	6.9500	1.03950	10

Self-efficacy average score is the lowest, especially about the idea of replacing traditional drawing by this virtual drawing, most of the participants are unsure and some responses are relatively low.

Summary Item Statistics

	Mean	Minimum	Maximum	Range	Maximum / Minimum	Variance	N of Items
Item Means	6.644	6.233	6.950	.717	1.115	.137	3

MSLQ – Questionnaire Analysis VI

Motivated Strategies for Learning Questionnaire

Reliability Statistics

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
. 788	. 800	3

	Mean	Std. Deviation	Ν
Self_Efficacy_VR	6.2333	1.29624	10
Intrinsic_Value_VR	6.7500	.88976	10
Interest_and_Motivation_VR	6.9500	1.03950	10

Item Statistics

Summary Item Statistics

	Mean	Minimum	Maximum	Range	Maximum / Minimum	Variance	N of Items
Item Means	6.644	6.233	6.950	.717	1.115	.137	3

"I got dizzy", "I cannot draw for a long time, because it is heavy." – Learner 3
" I think I may be it is expensive to draw in the VR." - Learner 6

Research Results and Discussions

01 GSR

Fluctuations in learners' emotional intensity.

02 Interview

7 out of 10 participantschoose VR to learnspatial reasoning.Most of participants

state that VR can help them understand spatial reasoning easier. **03**Questionnaire

Improved learning performance, especially in terms of intrinsic value, learners' interest and motivation.

 \bigcup VR can help improve spatial reasoning learning performance.

Research Discussion & Limitation

Future Works

03. 01 **Data Analysis with Improve Experiment Behavior Observation Agenda and Plan** 02. 04. Persona and **Demographics Sampling Grouping Analysis**

Thank You for Your Attention!

Q&A

Enhancing Spatial Reasoning Capability Using VR Immersive Experience

Contact

Minhnhan.ph@gmail.com | Phan Minh Nhan National Taipei University of Technology

