
research area: Green Computing for High Energy Physics

KIG: a tool for Carbon footprint monitoring in
physics research

International Symposium on Grids & Clouds (ISGC) 2023, Academia Sinica, Taipei, Taiwan.
03/24/2023

Francesco Minarini, PhD student in Physics @University of Bologna, Italy and INFN

Keep IT Green

2/18

● Motivation

● Energy and Carbon footprint formula

● Design of KIG

● KIG Test-bed

● Results

● Conclusions & Next Steps

Outline

In the last few years, the scientific progress driven by High-Performance Computing (HPC) technologies was noticeable.

Hardware/software improvements have granted advances throughout a wide variety of disciplines by allowing the

implementation algorithms of higher and higher computational intensiveness.

- AI/HPC implementations in particle physics [*] have been

successful in a wide number of processes (i.e. Simulation, Event

Selection, Event Reconstruction, Jet classification, BG rejection).

- Also other branches of physics have benefitted from HPC, for

instance meteorology, where numerical weather forecasting has

produced simulations of unprecedented detail and reliability.

- Also businesses are starting to heavily rely on AI and HPC.

Several reports [**] show that a majority of companies are

adopting AI tools to improve and/or consolidate their position on

the market.

3/18[*] https://doi.org/10.48550/arXiv.1806.11484
[**] https://l.infn.it/st

Introduction (1of2)

https://doi.org/10.1038/ncomms5308

https://doi.org/10.48550/arXiv.1806.11484
https://l.infn.it/st
https://doi.org/10.1038/ncomms5308

So far, the constant evolution of technology (in terms of power and energy-efficiency) has allowed us to keep up with

computing requirements and “naturally” curb the energy consumption.

Moore’s law: The number of transistors in an integrated circuit doubles approx. every 2 years

Koomey’s law: The number of computations per joule doubles every 1.57 years

The slowdown of hardware progress clashes with the spike of interest in HPC.
Understanding the footprint of modern computing today in order to set up energy curbing

strategies in time to ensure future research and their overall accessibility [1,2].

4/18

Dennard Scaling: As transistors get smaller, the power density stays constant = power use
stays in proportion with area of chip.

Introduction (2of2)

These laws, Dennard’s in
particular, are starting to

weaken [4].

Meanwhile, the HPC paradigm is gaining momentum not only in the scientific environment, but also in sectors that

historically had moderate interest in high-performance computing.

As a result, the demand for HPC resources will increase in the near future => energy consumption (and Carbon Footprint)

will spike, making computing less “cost-effective” w.r.t. today (energy is already becoming a problem worldwide).

Lannelongue et al. [3] propose a formula to calculate the energy footprint of some computing activity A launched on a generic resource X

= number of used cores

= power draw normalized of computing cores(kW)

= CPU usage factor -physically bound in [0,1]-

= allocated RAM memory(GB)

= Power draw of RAM (kW)

= Power Usage Efficiency of the machine/cluster

= Elapsed computing time (h)

The Carbon footprint of the computation is:

 = country-wise Carbon Intensity coefficient
(gCO2e* footprint of power-grid electricity).

In the following, Italy’s will be used for calculations.

5/18*Wright, L.A. et al. "Carbon footprinting: towards a universally accepted definition”, Carbon Management, 2014.

Energy and Carbon footprint formula

● an up-and-running computing node has a non-negligible computational clutter. The monitoring should not include

that.

● Furthermore, some available tools for detailed CPU-monitoring are proprietary (i.e. Intel Power Gadget, AMD system

monitor). This might lead to a “vendor lock-in” on the long run.

● Finally, the monitoring should not require, at any step, to alter the user’s set of privileges. This is coherent with the

best-practice of keeping user privilege as limited as contextually possible.

6/18

Technical approach:

● and can be calculated by leveraging the uniqueness of PIDs on Linux and appropriately parsing /proc/<PID>/stat and
/status files.

● , and are “bare metal” data and can be gathered in an appropriate external configuration file. This way, if hardware is
changed (or requirements change), we just need to update a simple file.

● , the elapsed computing time, can be easily measured with simple commands. Many programming languages can do that accurately

KIG design (1of2)

we can build a small node-level monitoring library+executable whose duty is to monitor PIDs we are interested in by gathering data
involved in the equation (A). To do that, we parse /proc/PID/stat and status files and integrate this info with bare metal data.

The language chosen for this PoC was C++. The repo of the
project will be public and MIT licensed:

KIG

Service Mock-up: Users interact with docker to obtain the container. Once the
container is up and running with an appropriate configuration file bound to it,
users only need to start the monitoring program. At the end of the process, users
obtain:

1) A report of consumed W, Elapsed computing time (h) and the carbon
footprint of the activity (gCO2e).

2) (if user has write permissions) A text file containing the LaTeX structure
of a sum-up table for easy reporting in papers.

7/18

https://github.com/fminarini/KIG

https://l.infn.it/sr

bind
/conf/config.toml

(Recommended) For ease of use and compliance with security
standards at computing facilities, a Docker image (Ubuntu
flavoured) was also published on Docker Hub. (Docker-
Apptainer compatibility was tested)

KIG design (2of2)

https://fminarini.github.io/KIG/html/index.html

GENSIM: generation and simulation of TTbar events at 14 TeV and 2021 CMS detector for the Run3 era. The workload
executes a CMSSW GENSIM job, which embeds the event generation and the Geant4 simulation event by event. CMSSW is a
multithreaded application; the default number of threads is 4 and the default number of copies is the number of cores divided
by 4.

DIGI: CMS reference workload executing digitisation of TTbar events at 14 TeV and 2021 CMS detector with a Run3 setup,
using premixed events for the pileup. The workload executes a CMSSW DIGI job. CMSSW is a multithreaded application; the
default number of threads is 4 and the default number of copies is the number of cores divided by 4.

RECO: CMS reference workload executing reconstruction of TTbar events at 14 TeV and 2021 CMS detector with a Run3
setup. The workload executes a CMSSW RECO job. CMSSW is a multithreaded application; the default number of threads is 4
and the default number of copies is the number of cores divided by 4.

The monitoring was deployed over some containerized reference CMS workloads (GENSIM, DIGI, RECO)* in order to test

the software on realistic payloads.

The choice of CMS was merely opportunistic, the monitoring is designed to be experiment-agnostic.

*https://link.springer.com/article/10.1007/s41781-021-00074-y 8/18

KIG Test-bed (1of2)

https://link.springer.com/article/10.1007/s41781-021-00074-y

● Opteron 6320: https://www.amd.com/en/products/cpu/6320

● Epyc 7313: https://www.amd.com/en/product/10991

2 machines from the INFN-CNAF High-Throughput farm were available as a test-bed.

172 HS06 was available for an extended period of time.
1293 HS06 was available for a restricted period of time.

Measurements were taken at node-level emulating the behaviour of a user submitting the payload to a single-node.

CPU
physical

Cores
(Total)

Hyperthreading RAM(GB)

172 HS06 2x AMD opteron
6320 16 NO 128

1293 HS06 2x AMD EPYC
7313 32 YES 128

9/18

KIG Test-bed (2of2)

https://www.amd.com/en/products/cpu/6320
https://www.amd.com/en/product/10991

10/18

Results
● Comparison of two machines with full usage of cores against the

same workload
○ Validation of the concept if linear trends emerge wrt

processed events and difference of machines is highlighted

● Footprint characterization of a workload running on a varying the
number of requested cores (172 HS06)

11/18

0 10000 20000 30000 40000 50000
Total Events processed(GENSIM)

0

1

2

3

4

5

6

7

8

kW
h

50
75100

150
200

300

500

700

50 75 100
150

200
300

500

700

Thread-per-core (TPC) = 4 (fixed), indip.copies (IC) = nCores/4, total events: TPC x IC x EPT

GENSIM(CMS) 1293HS06
GENSIM(CMS) 172HS06
kWs-per-event (172 HS06) = 2.16
kWs-per-event (1293 HS06) = 0.35

GENSIM-flow runs with different events-per-thread (EPT, tagged over points) configurations

The fluctuation of measured values over repeated

measures at same conditions (土 4%) was taken as

an early-estimation of errors.

The intercept of fit is fairly compatible with 4%

fluctuations around 0.

Intercept(172 HS06) = 0.007

Intercept(1293 HS06) = -0.038

kWs-per-event derived from the angular coefficient

of best-fit line multiplied by 3600 in order to easily

display it in kJ per event.

12/18

0 2000 4000 6000 8000 10000 12000
Total Events processed(DIGI)

0.0

0.2

0.4

0.6

0.8

1.0

kW
h

50
75

100

150

200

50 75 100
150

200

Thread-per-core (TPC) = 4 (fixed), indip.copies (IC) = nCores/4, total events: TPC x IC x EPT

DIGI(CMS) 1293HS06
DIGI(CMS) 172HS06
kWs-per-event (172 HS06) = 0.36
kWs-per-event (1293 HS06) = 0.08

DIGI-flow runs with different events-per-thread (EPT, tagged over points) configurations

kWs-per-event derived from the angular coefficient

of best-fit line multiplied by 3600 in order to easily

display it in kJ per event

The fluctuation of measured values over repeated

measures at same conditions (土 4%) was taken as

an early-estimation of errors.

The intercept of fit is fairly compatible with 4%

fluctuations around 0.

Intercept(172 HS06) = -0.009

Intercept(1293 HS06) = -0.005

13/18

0 2000 4000 6000 8000 10000 12000
Total Events processed(RECO)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

kW
h

50

75
100

150

200

50
75

100

150

200

Thread-per-core (TPC) = 4 (fixed), indip.copies (IC) = nCores/4, total events: TPC x IC x EPT

RECO(CMS) 1293HS06
RECO(CMS) 172HS06
kWs-per-event (172 HS06) = 1.44
kWs-per-event (1293 HS06) = 0.22

RECO-flow runs with different events-per-thread (EPT, tagged over points) configurations

kWs-per-event derived from the angular coefficient

of best-fit line multiplied by 3600 in order to easily

display it in kJ per event

The fluctuation of measured values over repeated

measures at same conditions (土 4%) was taken as

an early-estimation of errors.

The intercept of fit is slightly out of the fluctuation

boundary.

Intercept(172 HS06) = 0.077

Intercept(1293 HS06) = -0.049

Data was gathered running 4 separate experiments, gradually saturating cores (keeping the total number of processed
events constant).

left: Green-gradient lines = Elapsed computing time while augmenting the number of working cores (normalized).
 Purple-gradient lines = kW absorption while requesting more cores (normalized).

right: Report of Carbon footprint for CMS GENSIM workloads. At 8 core we see the lowest footprint

The “8 core tradeoff point” cannot be used as a data center recommendation, obviously.
The observation triggers, nonetheless, some further questions (is this working point software-bound or hardware-bound? can we
use it to better manage submissions?)

14/18

4 6 8 10 12 14 16
n° of cores

0.3

0.4

0.5

0.6

0.7

0.8
El

ap
se

d
co

m
pu

ti
ng

 t
im

e
(a

.u
.)

T vs cores 400 events
T vs cores 600 events
T vs cores 800 events
T vs cores 2000 events

0.2

0.3

0.4

0.5

0.6

0.7

ab
so

rb
ed

 k
W

 (
a.

u.
)

CMS GENSIM workloads comparison for time consumption vs absorbed energy (kW)

kW vs cores 400 events
kW vs cores 600 events
kW vs cores 800 events
kW vs cores 2000 events

The “8 core tradeoff point” cannot be used as a data center recommendation, obviously.
The observation triggers, nonetheless, some further questions (is this working point software-driven or hardware-driven?, can we
use it to better engineer submissions?)

Data was gathered running 4 separate experiments, gradually saturating cores (keeping the total number of processed
events constant).

left: Green-gradient lines = Elapsed computing time while augmenting the number of working cores (normalized).
 Purple-gradient lines = kW absorption while requesting more cores (normalized).

right: Report of Carbon footprint for CMS DIGI workloads. At 8 core we see the lowest footprint.

15/18

4 6 8 10 12 14 16
n° of cores

0.3

0.4

0.5

0.6

0.7

0.8
El

ap
se

d
co

m
pu

ti
ng

 t
im

e
(a

.u
.)

CMS DIGI workloads comparison for time consumption vs absorbed energy (kW)

T vs cores 400 events
T vs cores 600 events
T vs cores 800 events
T vs cores 1000 events

0.2

0.3

0.4

0.5

0.6

0.7

ab
so

rb
ed

 k
W

 (
a.

u)

kW vs cores 400 events
kW vs cores 600 events
kW vs cores 800 events
kW vs cores 1000 events

Data was gathered running 4 separate experiments, gradually saturating cores (keeping the total number of processed
events constant).

left: Green-gradient lines = Elapsed computing time while augmenting the number of working cores (normalized).
 Purple-gradient lines = kW absorption while requesting more cores (normalized).

right: Report of Carbon footprint for CMS RECO workloads. At 8 core we see the lowest footprint.

The “8 core tradeoff point” cannot be used as a data center recommendation, obviously.
The observation triggers, nonetheless, some further questions (is this working point software-driven or hardware-driven? can we
use it to better engineer submissions?)

16/18

4 6 8 10 12 14 16
n° of cores

0.3

0.4

0.5

0.6

0.7

0.8
El

ap
se

d
co

m
pu

ti
ng

 t
im

e
(a

.u
.)

CMS RECO workloads comparison for time consumption vs absorbed energy (kW)

T vs cores 400 events
T vs cores 600 events
T vs cores 800 events
T vs cores 1000 events

0.2

0.3

0.4

0.5

0.6

0.7

ab
so

rb
ed

 k
W

 (
a.

u.
)

kW vs cores 400 events
kW vs cores 600 events
kW vs cores 800 events
kW vs cores 1000 events

17/18

- Test workloads from different experiments or physics branches (Data -> Design -> new Computing)

- scale from node level to cluster level.

- Explore different computing platforms (i.e. non x86 architectures) and accelerators (GPUs, for instance).

- Try using the output of KIG (kWs-per-event, Time-Energy working points) to ponder on the way we model and

manage submission.

● The comparison between two different machines allowed us to have a validation of the monitoring and a

quantitative perspective of the difference between old platforms and newer ones in terms of energy and

throughput. Fitting data gave us back a kWs-per-event parameter which might be included in a more “HEP-

oriented” characterization of machines.

● Focusing on the impact of core demand in terms of Time-Energy tradeoff and Carbon footprint gave us back a

clearer perspective on the footprint of common HEP processes, which can trigger further analyses to improve

the way we manage submissions as well as facilities.

Conclusions

Next Steps

THANKS FOR THE ATTENTION

References:

[1] Schwartz, R., Dodge, J., Smith, N., Etzioni, O. “Green AI” https://arxiv.org/abs/1907.10597

[2] Strubell, E., Ganesh, A., mcCallum, A. “Energy and policy considerations for Modern Deep Learning Research” https://doi.org/10.1609/aaai.v34i09.7123

[3] Lannelongue, L., Grealey, J., Inouye, M. “Green algorithms: Quantifying the Carbon Footprint of Computation” https://doi.org/10.1002/advs.202100707

[4] Horowitz, M. “Computing’s Energy problem (and what we can do about it)” https://hal.science/hal-02549565v4

francesco.minarini3@unibo.it

https://github.com/fminarini/KIG

Acknowledgements:
- Daniele Bonacorsi (UNIBO), Domenico Giordano (CERN), Andrea Valassi (CERN) for early feedback over

results and PoC design.

- INFN-CNAF and INFN-CNAF IT Support for machine provisioning.

https://arxiv.org/abs/1907.10597
https://doi.org/10.1609/aaai.v34i09.7123
https://doi.org/10.1002/advs.202100707
https://hal.science/hal-02549565v4

ADDITIONAL MATERIALS

CMS @ LHC (few details)

The Compact Muon Solenoid (CMS) is a general-

purpose detector at the Large Hadron Collider

(LHC). It has a broad physics programme ranging

from studying the Standard Model (including the

Higgs boson) to searching for extra dimensions

and particles that could make up dark matter.

Goodness-of-fit

A more “in-depth” documentation is available in the Github Repository, in the following a brief representation of a quick-start with KIG.

docker pull francescominarini/kig:latest

docker run -dit --name <container_name> --pid host \
--mount type=bind,source="$(pwd)"/<folder_with_toml_file>,target=/conf <IMAGE_NAME> bash

docker exec -it <container_name> ./KIG_ex $(pgrep -f "<monitored_activity>" | awk 'ORS=" "')

docker run -it --name <container_name> --pid host \
--mount type=bind,source="$(pwd)"/<folder_with_toml_file>,target=/conf <IMAGE_NAME> bash

“interactive” usage

“App-like” usage

Using containerized KIG (CLI commands)

Using containerized KIG (config.toml)

Energy-Time cut trade-off

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

