Scalable training on scalable infrastructures for programmable hardware

Dr. Marco Lorusso 1,2

Prof. Daniele Bonacorsi 1,2
Prof. Davide Salomoni 2,4
Dr. Mirko Mariotti 2,3
Dr. Alessandro Costantini 4

Dr. Riccardo Travaglini 2
Dr. Paolo Veronesi 2
Dr. Giulio Bianchini 2,3
Dr. Doina Cristina Duma 4

1University of Bologna - Department of Physics and Astronomy
2INFN - National Institute for Nuclear Physics
3University of Perugia - Department of Physics and Geology
4INFN - CNAF Bologna

22nd March 2022
Learning Machine Learning

- **Machine Learning** algorithms are everywhere;
 - This is reflected in the number of workshops and schools that are held every year;
 - More than **200** summer schools were organized in the last **5 years** according to a community redacted list [1];
 - Also popularization of **Massive Open Online Courses (MOOC)** on Artificial Intelligence, e.g:
 - **Coursera** with teachers from top universities (∼ **1600** different courses on ML);
 - **ECMWF** course: *Machine Learning in Weather and Climate*

And embedded and programmable logic?

- Increased **popularity** of IoT devices and **programmable SoC** (FPGA) in general;
- **However** lack of schools and workshops on fusing ML and FPGAs;
- Very **different** set of skills:
 - Very high level programming
 - Knowledge of libraries like TensorFlow and Pytorch
 - Data Science
 - Background of electronics
 - Hardware Descriptive Languages (HDL)
 - Lower level software programming

Even though the field is gaining traction, **difficulties** in finding people who knows enough of both worlds to make progress.
Workshop on ML on FPGA in Bologna

- **Machine learning techniques with FPGA devices for particle physics experiments**, organized by INFN Bologna with CNAF technical support and funded by the INFN Training Program (2-4 November 2022);

- **First step** towards a greater focus on education in this field, first of a kind in Italy;

- **Leading lecturers** involved in the development of tools to make hardware more approachable at a higher level;

- Support from the **AMD/Xilinx University Program** (XUP);

- 20 in person participants.
Topics of the workshop

- Introduction to efficient use of Machine Learning in HEP;
- Crash course on what FPGAs are;
- **HLS4ML** and how to translate Python to something implementable in hardware (see next slides);
- **Vitis-AI**, the AMD/Xilinx solution to Artificial Intelligence on programmable hardware;
- A new kind of computer architecture (multi-core and heterogeneous) which dynamically adapt to the specific computational problem rather than be static: the **BondMachine** (see next slides);
- How Quartus and Intel make ML on FPGA possible;
- (More than) half of the duration of the course spent on tutorials;
The BondMachine Toolkit

The BondMachine is an open source software ecosystem for the dynamical generation of computer architectures that can be synthesized on FPGA.

- High level programming language (Golang) for both the hardware and software
- Functional style programming
- Computational graph and Neural Networks
- Architecture generating compiler

- Fast machine learning inference with FPGA
- Development of accelerated systems on hybrid processors (ARM + FPGA)

https://github.com/BondMachineHQ
The hls4ml package

- Developed by members of the HEP community to translate **ML algorithms** written in **Python** into **High Level Synthesis** code;
- HLS allows the **generation of hardware descriptive code** (HDL) from **behavioral descriptions** contained in **C++** program;
- The translated Python objects can be injected in the automatic workflow of proprietary software like Vivado from Xilinx Inc.
Offer a testing ground to the students

- Workshop as a chance to **start working** with this technology and new workflows;
- The need for **specific software** and libraries to **develop** both ML algorithms and FPGA firmware raise the need for a **dedicated development machine** available to the attendees;
- Wanted to work with **actual hardware** to test first-hand the firmware, BUT:
 - FPGAs are generally **not accessible** to more people at once for programming;
 - **A board for each person**
 - **Too expensive** and generally not feasible;
- **Solution:** **FPGAs in the Cloud!**
Cloud classrooms

Develop

- VMs hosted on the INFN Cloud infrastructure;
- Python environment with ML libraries to develop Neural Networks;
- Command line interface with Jupyter notebooks support;
- HLS4ML and Vivado Design Suite to produce FPGA firmware;
- Available during and after the workshop.

Deploy

- VMs hosted by Amazon Web Services (see next slide);
- All set-up with drivers and libraries to program the included FPGA;
- Vitis-AI Docker container;
- Available during the workshop and after if requested.
AWS F1 Instance

Cloud computing offers a **Pay-per-use** place to test FPGA firmware with relatively low cost.

- A specific kind of machines in the **AWS Cloud Computing** catalogue includes FPGAs;
- EC2 F1 instances use **FPGAs** to enable **delivery** of **custom hardware accelerations**;
- Packaged with **tools** to **develop**, simulate, debug, and **compile** a design.
Integrating local and cloud resources

- Workshop itself as a test for starting to understand if a seamless integration between INFN Cloud and a Cloud provider like AWS would be useful;
- A sketch of how it would work is the following:
 1. I authenticate myself on INFN Cloud with a kind of federated authentication;
 2. I select the type of resource(s) I want, e.g. a Xilinx U250 or U55C or an Intel Terasic;
 3. It may be that the desired FPGA resource is not available on INFN Cloud, but it is available on AWS, for example;
 4. In this case, the resource would be instantiated on AWS transparently and the user would be given the endpoint to connect to, without needing a different authentication or interface.
An Edge-Cloud-HPC Continuum

- In the context of the TeRABIT project
 - INFN is acquiring HPC resources, including multi-vendor FPGA clusters, to create HPC Bubbles
 - smaller HPC centers linked to a multi-site federated Cloud infrastructure (INFN Cloud).
What we have learned - Next steps

▶ The workshop sparked a **great interest** which pushed us organizers to **increase** the maximum number of participants ⇒ thanks to the Cloud solutions it was possible with **minimal efforts**;

▶ Nevertheless, it is still a **first attempt** for such an event, more work to be done e.g. time for **even more tutorial** and possibility to "come prepared" with **access** to the machines even **before** the workshop;

▶ New and more efficient **teaching techniques** could be tested, like **inverted learning**;

▶ Creation of a **VM template** with all tools for this kind of development, and publication of an **AMI** for deployment;
 ⇒ Useful for both education purposes and research work;