SPEEDING UP SCIENCE THROUGH PARAMETRIC OPTIMIZATION ON HPC CLUSTERS

Speaker: Jonas Weßner

Co-authors: Rüdiger Berlich, Matthias F. M. Lutz, and Kilian Schwarz

h_da

HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

TABLE OF CONTENTS

- Our Research at GSI
- ► The Geneva Optimization Library
- New Feature in Geneva: MPI Consumer for HPC Clusters
- Performance of the MPI Consumer
 - Comparison with Boost.ASIO & Boost.BEAST Consumers
 - Measurements on HPC Cluster
- Summary
- ► Future Work

OUR RESEARCH AT GSI

3

Parametric Optimization for Quantum Physics

Problem: Lattice Quantum Chromodynamics (QCD) simulations are computationally expensive

Goal: Effective quantum field theories for QCD

Method:

Transformation to effective degrees of freedom in terms of unknown parameters (LEC)

Challenge: How to determine the LECs efficiently through optimization?

OUR RESEARCH AT GSI

THE GENEVA OPTIMIZATION LIBRARY

Large-scale Parametric Optimization in Distributed Environments

PARAMETRIC OPTIMIZATION WITH GENEVA

github.com/gemfony/geneva

<u>gemfony.eu</u>

- Open-source framework in C++ for parametric optimization
- Focus on distributed execution: grids, clouds, clusters
- Used at GSI for QCD research
- ► Recently:
 - MPI Consumer for distributed execution on HPC clusters: <u>https://doi.org/10.1007/s41781-023-</u> 00098-6
- Today's Presentation: Performance of MPI Consumer

PERFORMANCE OF THE MPI CONSUMER

Comparison with Boost.Asio and Boost.Beast Consumers

On a Single 128-core Machine

3

9

BOOST.ASIO CONSUMER

- LIMITED SCALABILITY
- TYPICALLY AT GSI: 5+ SEC EVALUATION TIME

BOOST.BEAST CONSUMER WITH 64 THREADS 1 IMPROVED SCALABILITY

MPIVS. BEAST

 IMPROVEMENTS FOR ALL RELEVANT WORKLOADS

MPI CONSUMER PERFORMANCE

On GSI's Green IT Cube HPC Cluster

► GSI's green IT cube:

- > >400 nodes
- > 56-256 cores and 128GB-1TB RAM each
- Slurm workload manager
- ► Test setup:
 - > 400 distributed clients
 - > Mean over 10 measurements
 - > -> Compare results with results on multicore machine

TESTS ON HPC CLUSTER

DIFFERENCE OF 128-CORE MACHINE AND CLUSTER

MEASUREMENTS ARE REPRODUCIBLE ON CLUSTER WITH MINIMAL ERROR

- Geneva optimization library handles large-scale problems
- Better user experience for HPC because of MPI Consumer
- MPI Consumer system design to be published in Computing and Software for Big Science: <u>https://doi.org/10.1007/s41781-023-00098-6</u>
- Improved Scalability: Even more efficient than ASIO/BEAST Consumers

- MPI Consumer to be brought in production on GSI's Green IT Cube cluster with 1000+ clients
- More optimization algorithms and metrics for Geneva optimization library
- Paper about performance evaluation in Proceedings of Science (PoS)

FUTURE WORK

BACKUP SLIDES

MPI CONSUMER SCALABILITY SERVER WITH 64 THREADS RUNNING ON 128-CORE MACHINE

MPI COMPARED WITH BOOST.ASIO CONSUMER

RELATIVE IMPROVEMENT

Detailed explanation in our previous publication: https://doi.org/10.1007/s41781-023-00098-6

BENEFIT OF ASYNC CLIENT REQUESTS

RELATIVE IMPROVEMENT

IMPACT OF THREAD POOL SIZE

SYSTEM EFFICIENCY

Detailed explanation in our publication: https://doi.org/10.1007/s41781-023-00098-6

MEAN ABSOLUTE ERROR ON 128-CORE MACHINE

- 10 MEASUREMENTS
 PER DATA POINT
- 400 CLIENTS

MEAN ABSOLUTE ERROR HPC CLUSTER

- 10 MEASUREMENTS
 PER DATA POINT
- 400 CLIENTS