The History of the Accept and Rise of Geant4

ISGC 2023, Taipei

Takashi Sasaki/KEK

Happy retirement, Simon!

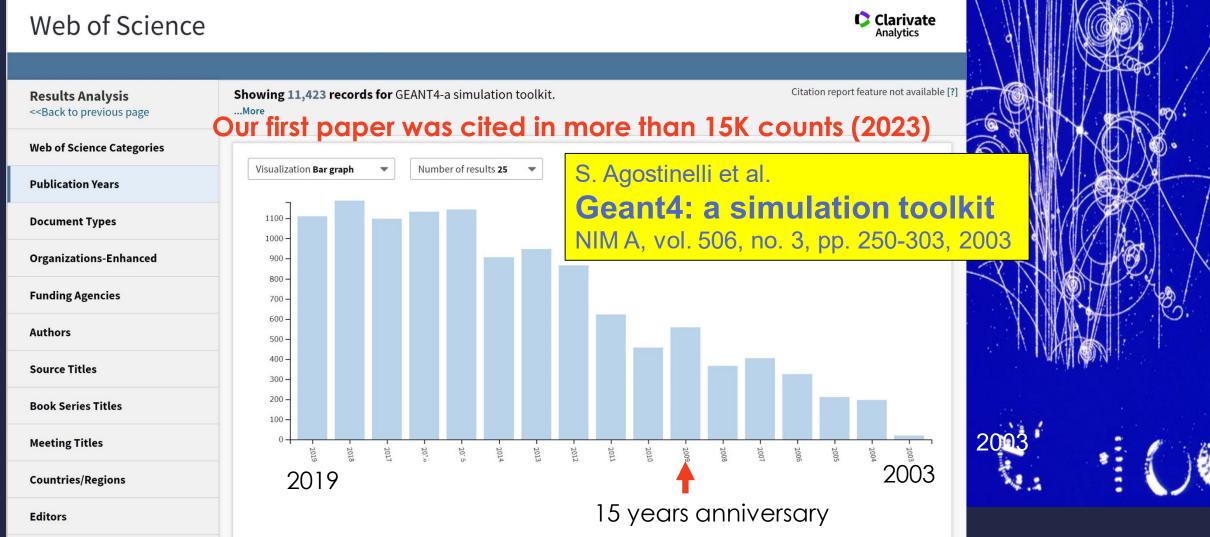
Congratulations on the 20th anniversary of ISGC!

Disclaimer

- I'm talking about my personal experience in Geant4
 - Something behind the official documentation
 - This is not an official presentation of the Geant4 collaboration
- Some parts of this presentation are courtesy of other Geant4 developers and users

What is Geant4?

- Started the development in 1994 based on earlier Japanese efforts
- Deployed Object-Oriented technologies fully, OOA/OOD/OOP
- A software toolkit to simulate interactions between particles and matter
 - Radiation transport simulation software
 - https://www.geant4.org/
- The biggest resource eater on the GRID sites
 - Half of the computing resources in WLCG are consumed by the detector simulation based on Geant4
 - All ongoing HEP experiments use Geant4 for their detector simulation currently

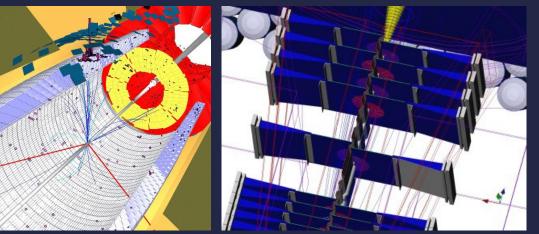


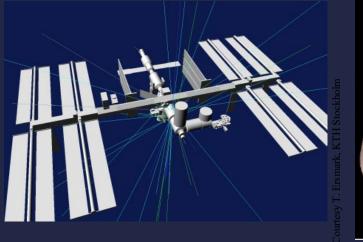
Geant4 License

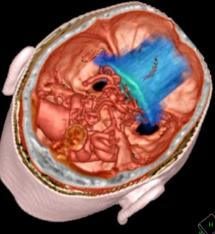
- Geant4 is an open-source software
- Rather relaxed license
 - Allows commercial use
 - Essence from the BSD license
- <u>https://geant4.org/download/license.html</u>
 - Lots of individual Japanese names on the page
 - Why?
 - You will learn the reason soon

The most popular radiation simulator

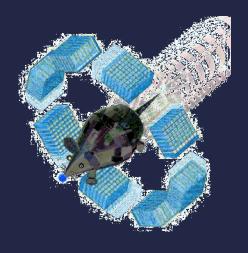
Worldwide recognition

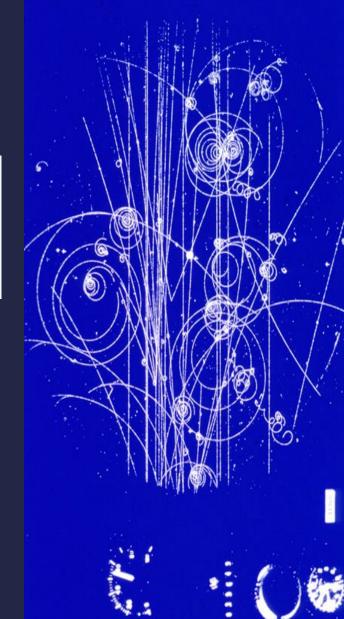

Web of Science

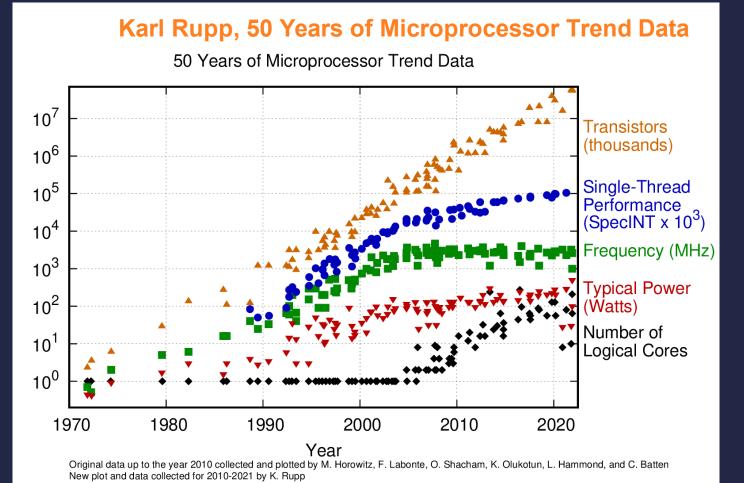

Clarivate Analytics

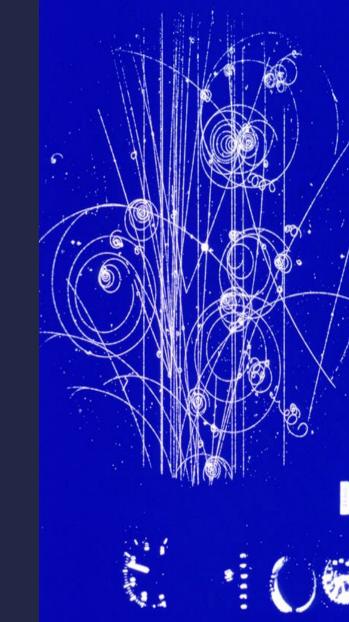

7

					O. A gooting III of all					
Results Analysis < <back page<="" previous="" th="" to=""><th colspan="3">Showing 11,423 records for GEANT4-a simulation toolkit. More</th><th colspan="6">S. Agostinelli et al. Geant4: a simulation toolkit</th></back>	Showing 11,423 records for GEANT4-a simulation toolkit. More			S. Agostinelli et al. Geant4: a simulation toolkit						
Web of Science Categories									-303, 2003	
Publication Years	Visualization Treemap •					-				
Document Types	5,575 USA	3,410 RUSSIA	2,964 switzer		1,894 JAPAN	1,823 portugal	1,816 scotlan			
Organizations-Enhanced										
Funding Agencies	4,140 germany	3,359 ENGLAND	2,281 POLAND	2,281 POLAND						
Authors					1,791 CZECH REPUBLIC			1,740 HUNGARY		
Source Titles	3,964 ITALY	3,183	2,220 BRAZIL						i mini	
Book Series Titles		PEOPLES R CHINA			1,764			1 500		
Meeting Titles	-		2,155 NETHERI		CANADA	1,(TAIN	6 59 NAN	1,580 ARMENIA		
Countries/Regions	3,635 FRANCE	3,101 SPAIN	2,025	;	1,746 AUSTRIA		597		N.s.	
Editors			TURKEY			SER	BIA			


Multi-discipline



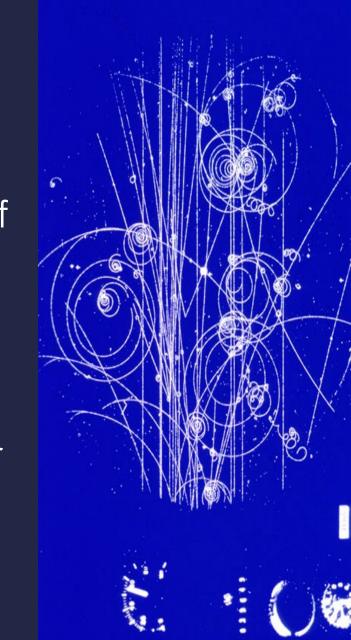




Evolution continues following microprocessor trend

23/03/23

Takashi.Sasaki@kek.jp


Geant4 evolutions in parallelization

- 1. Sequential mode: original since Geant4 v1.0 (1998)
 - Single core (thread) does everything
- 2. Job level parallelism mode: since Geant4 v9.3 (Dec. 2007)
 - G4MPI for multi MPI implementations
- 3. Multithreaded event-level parallelism mode: since Geant4 v10.0 (Dec.2013)
- 4. Task-level parallelism follows

GPU efforts

- Lots of attempts to try machine translation of Geant4
 - C++ to CUDA
 - None of them were much successful
 - Geant4 has a sophisticated geometry description capability
- MPEXS, a CUDA radiation transport simulator
 - State-of-the-art software developed by the KEK Geant4 team
 - Forked from Geant4
 - I'll be back to MPEXS later

Brief History of Geant4

Early discussions at CHEP 1994 @ San Francisco ^ore-storic

- "Geant steps into the future" R. Brun et al.
- "Object oriented analysis and design of a GEANT-based detector simulator" K. Amako et al.

Dec '94 – R&D project start

Apr '97 – First alpha release

Jul '98 – First beta release

Dec '98 – First Geant4 public release - version 1.0

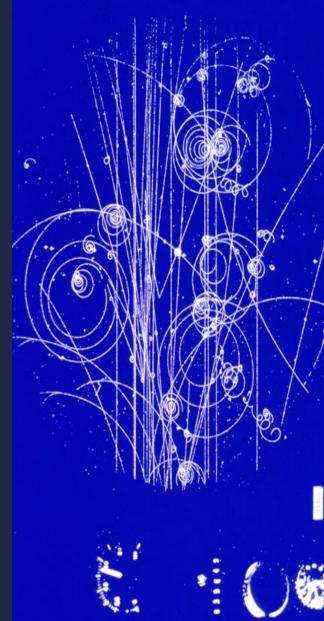
Dec. '13 Geant4 v10.0

- Several major architectural or design revisions
- E.g. STL migration, cuts per region, parallel worlds, multithreading

Dec 4th, '20 – Geant4 version 10.7 release, task-based parallelism

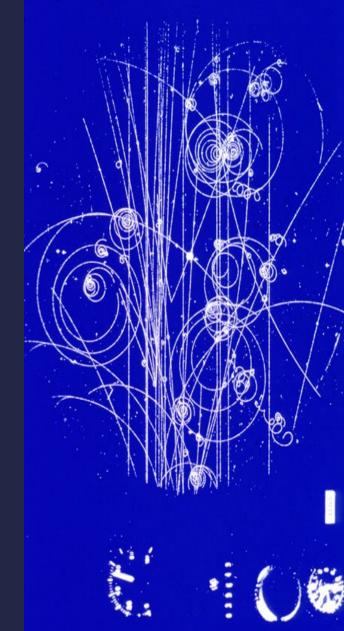
• Nov 19th, '21 – Geant4 10.7-patch03 release

Dec 9th, '22 – Geant4 11.1 release



Production phase

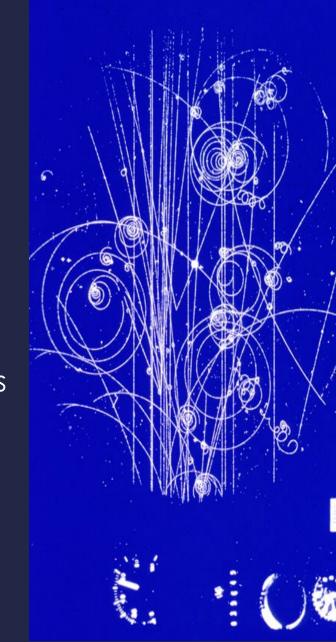
JS


How Geant4 survives?

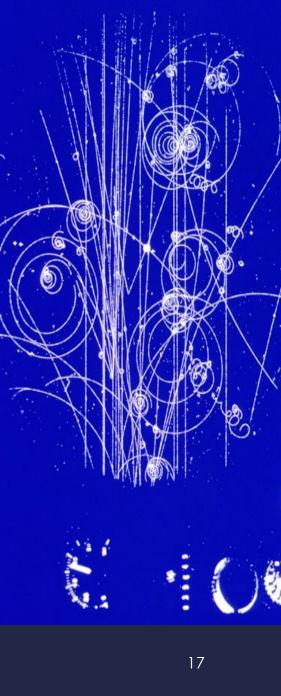
- Right decision on design and implementation
 Strongly related to the History of Geant4
- Collaboration management
 - Leadership in an international collaboration
- Evolution following the technology trend
 - Multi core
- Sustainable development and support
- An International Collaboration
 - Independent from CERN


Background history

- Early 1990's
 - Two large collider projects were ongoing for the Higgs search
 - The Superconducting Super Collider(SSC) @TX, USA
 - Japan participated in the SDC experiment
 - LHC @CERN Geneve, Switzerland
- Oct. 1993
 - SSC was canceled
- 1995
 - Japan joined the ATLAS experiment and contributed for the LHC construction
- 1997
 - the USA joined the LHC experiments and contributed for the LHC construction


HEP software in the SSC/LEP era

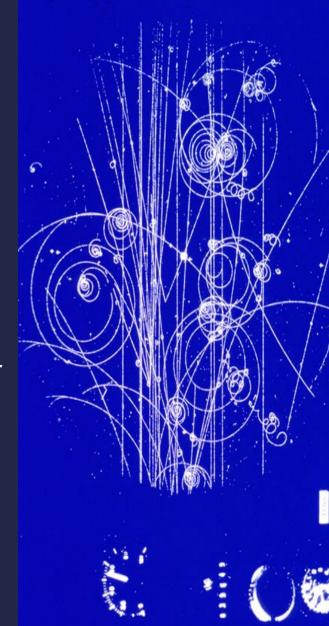
- CERNLIB was great for a new experiment to start over the software construction, but SSC competed with LHC
- Technically, we were not satisfied enough with CERNLIB
 - User documentations were very well written, but no design document, especially for internal data structures
 - Coding quality was sometimes horrible
 - More than spaghetti
 - Undocumented features often
 - No way to add new functionality by users
- Maintainability was the biggest issue
 - More than 30 years (at least) lifespan of SSC/LHC
 - Accelerator construction took ten years+ twenty years+ operation


SDC Japan

- Japanese group decided to contribute to the detector construction and software in SDC
- Started to work on the construction of detector simulation software based on GEANT3
 - Integration of software parts developed independently by geometrically distributed subgroups was more than the nightmare
 - We felt that FORTRAN isn't the language for development and maintenance in the coming three decades
- Decided to develop a replacement for GEANT3 using OOA/OOD/OOP

Software maintainability

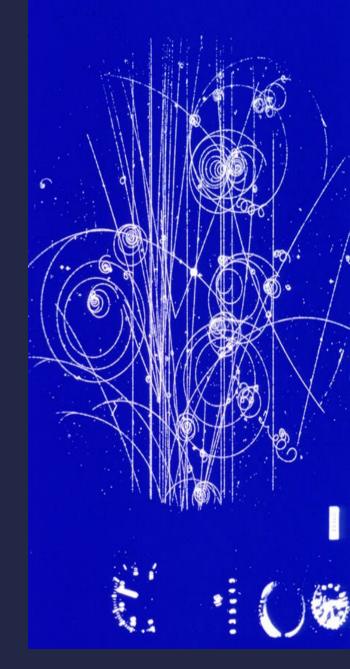
- Supposed 30 years of life for the software with 1M lines of code
 - Multi generations of software developers involve further development and maintenance
 - For latecomers, design documents are essential to understand the software quickly
- We sought a systematic and schematic way to record the discussion on the design
 - Software evolves continuously, and the detail of the design changes time by time
- Finally, we encountered the Object-Oriented technologies


Rise of OO in early 90'

- OOP already had a long history since 60'
 - C++ has matured enough finally
 - The C++ Programming Language 1990
 - The Annotated C++ Reference Manual in 1990
 - The C++ Programming Language 2nd edition 1991
- OOA/OOD methods finally converged into UML in 1994
 - OMT, OOSE, and Booch method in 1990
 - Standard for the class and other diagram descriptions
- In eraly1990', all the necessary tools for OO had come
 - Major computer vendors started to sell C++ compilers
 - Many people started to develop their software with those new tools


Japanese prototype

- "ProdiG: Toward Object Oriented GEANT", Y.Takaiwa, 1993, MC93
 - Started in 1992
 - Drawn class diagrams using OMT (James E. Rumbaugh)
- Big discussion between reengineering GEANT3 or starting from the scratch
 - Discussion went long and looked continued forever
 - We decided to go reengineering GEANT3
 - HEP jargon, such as RUN, EVNET, TRACK, etc., are brought into our class diagram at this stage
 - We didn't know the detailed usage of radiation simulators in other fields


CERN GEANT team prototype

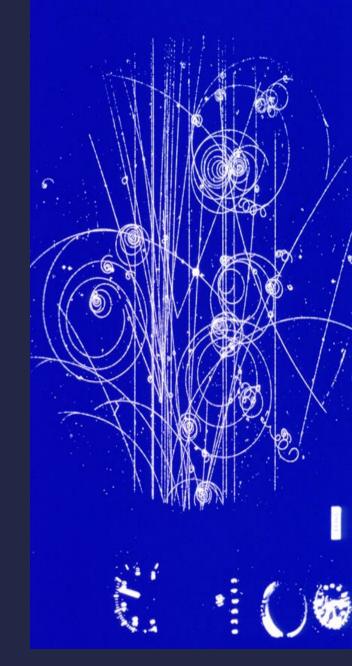
- Simone Giani and Paul Kent started the development of a C++ class library for detector geometry description in 1992
 - Paul Kent was a graduate student working as a summer student at CERN
 - This project was secret because nobody wanted to use another programming language other than FORTRAN at CERN at that time
 - The FORTRAN giant, Michael Metcalf, had his office the next door
- Rune Brun was thinking of developing an alternative for CERNLIB toward LHC

GEANT3

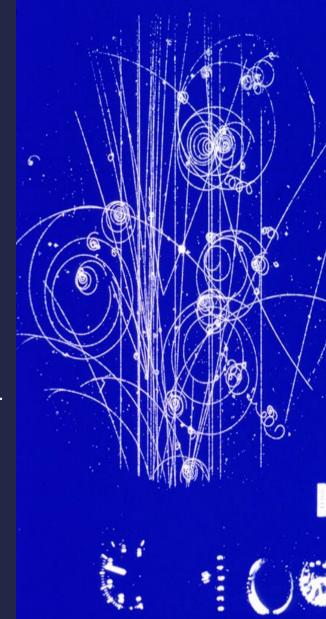
- A part of CERNLIB
- The first radiation simulation software with detailed geometry description functionality with the complete set of physics processes
 - GEANT= GEometry ANd Tracking
 - Integrated graphics
- Written in FORTRAN
- Rune Brun led the development at that time
 - Project lead and principal designer

CERNLIB

- PATCHY was used for code management
 EOPTRAN bad no boader file
 - FORTRAN had no header file
- All functionalities necessary for a HEP experiment were covered
 - PATCHY for code management
 - ZBOOK/ZEBRA for data management
 - GEANT3 for detector simulation
 - HBOOK for histogramming
 - PAW for visualization
 - HIGZ for graphics
 - MINUIT and other packages for numerical calculation
 - User contributions


RD44 (CERN R&D)

- CERN GEANT and Japanese groups met at MC93, mini-workshop at CERN in 1993 and CHEP94 for discussing about the future of GEANT3
 - CHEP94 was held after SSC was terminated
- Both groups agreed to collaborate and make a proposal to CERN for research funding as P58
 - Approved as RD44 (1994-1998)
 - Many other people from lots of institutions joined us
 - Led by Simone Giani
 - Rune Brun had left CERN IT
- After the first version of Geant4 was released in 1998, the Genat4 collaboration was established
 - 100 developers from more than ten countries


Basic requirements on Geant4 in HEP

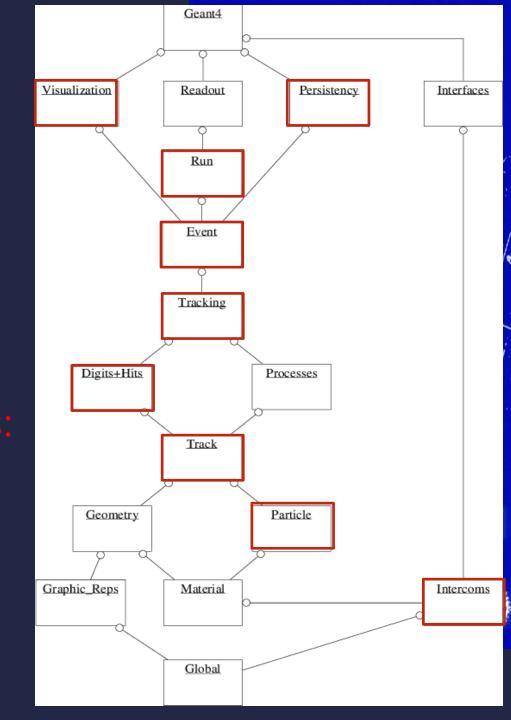
- 30 years of life
 - Maintainability
 - Following the evolution of the computing environment
 - Extendibility
 - Users can add any new functionality easily by themselves
 - Active developments over the life
 - Lower threshold for latecomers
 - Design documents
- Capability to simulate the response of the detectors at LHC

Wider requirement sampling during RD44

- Not only HEP but also medicine and space were under our target since the beginning
 - ESA (European Space Agency) joined us
 - Interviewed medical physicists
 - Particle therapy (proton and carbon)
- Learned other software for radiation transport simulation not only GEANT3, but also, FLUKA, MCNP, EGS, and so forth.

What we agreed at the beginning of RD44

- The product name is "Geant4" not "GEANT version 4"
 - Should be "Geant4" not "GEANT4"
 - We wanted to reveal that we are not using FORTRAN
- Toolkit approach
 - No main program
- All diagrams and documents should be maintained and kept very well
 - We first deployed OMT, then the Booch method and UML followed
- We have "Class categories"
 - Originally in the Booch method, but not in UML
 - A group of classes
 - We continued to use this concept with UML
 - One working group for one class category

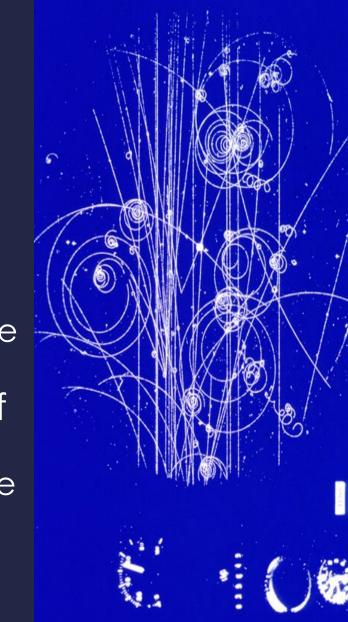


Geant4 class category diagram

- Each class category has a working group
- Each working group has independent governance and development goals
- Steering Board decides the development goals for each year

Major Japanese contributions Visualization, Run, Event, Tracking, Digits+Hits, Track, Particle, Interfacoms and Persistency

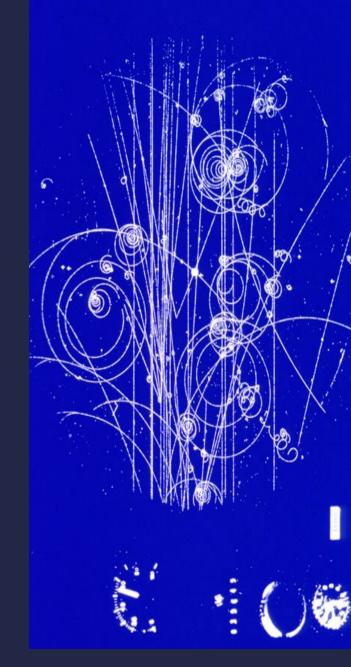
Takashi.Sasaki@kek.jp


Centralized to distributed software development

- CERN had an extensive software development team
 - Still, they need more manpower for LHC software
- New age had come with the Internet; Worldscatted small groups may work in parallel and independently in software development
 - World Wide Web for information sharing
 - WWW was born in 1990
 - Code repository and management systems
 - AFS, CVS, then git

OOA/OOD/OOP

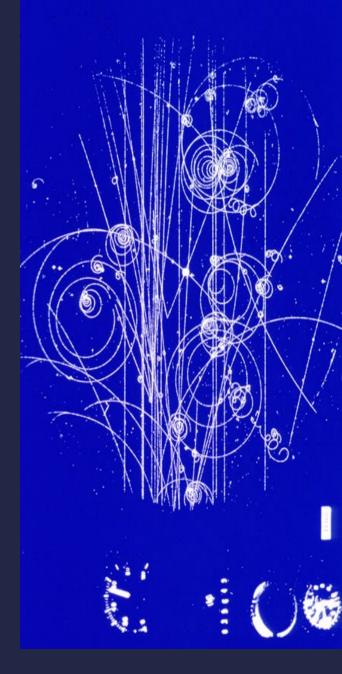
- For the first two years, we spent time on the design discussion
 - Based on earlier Japanese design, redraw lots of diagrams
 - Japanese people knew such discussions never be quickly converged from the previous experience
- Prototype development ensure the power of OO
 - Integration of independently developed software parts went much easier
 - We confirmed that we were toward the right direction


Responses to RD44

- FORTRAN lovers upset a lot
 - Lots of FORTRAN lovers were around CERN
 - CERN IT was contributing to the standardization of FORTRAN
 - They said C++ is not a program language for physicists
- Since Fortran 2003, Fortran became an object oriented language
 - If it were 10 years earlier, HEP people could have stayed with Fortran

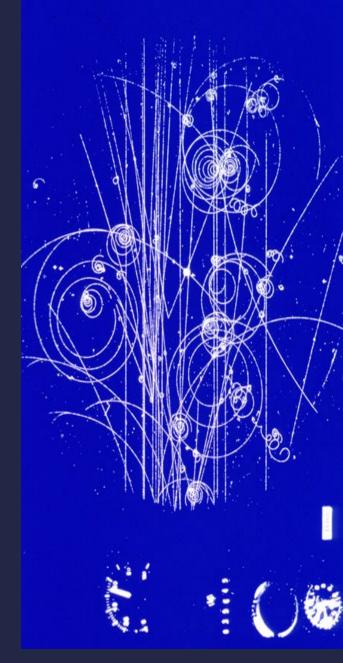
Geant4 1.0

- The first version of Geant4 released public in 1998
 - Toward the release, the developers had a workshop in Niigata Japan
 - We developed and debugged the code
 - Real tough work
 - Here is another Japanese contribution
 - Hitachi Ltd. sponsored the workshop and rend lots of UNIX workstations during the period
 - Without their help, we couldn't release Geant4 timely
- We opened source code without any charges


Documents

- For Users
 - Introduction
 - Installation guide
 - Physics manuals
- For Application Developers
 - How to develop an application using Geant4
- For Toolkit Developers
 - for those who want to contribute to the extension of the functionality to the Geant4 toolkit

Examples

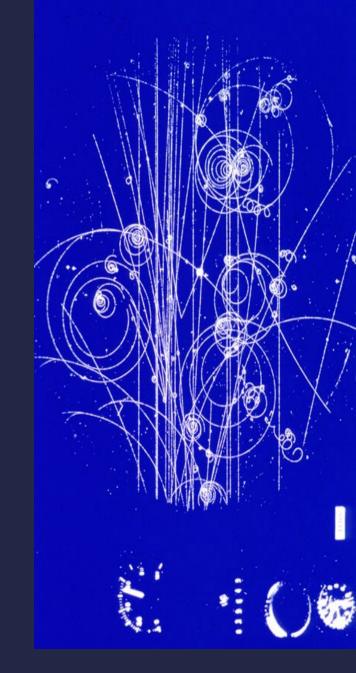

- Lots of examples for the different level users
 - Basic Examples
 - Extended Examples
 - Advanced Examples
- New users may try to look the source code and try to run

Training opportunities

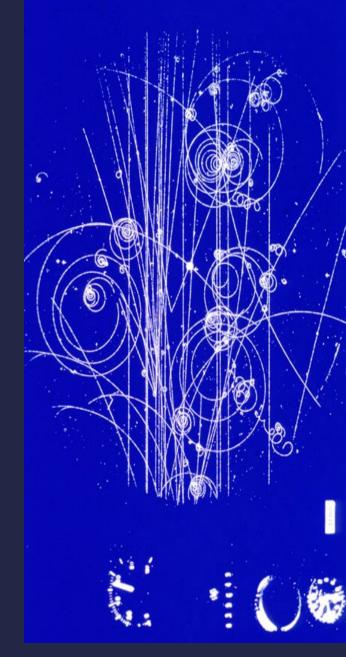
- Training courses held regularly everywhere in the world
 - Developers conduct training courses often, but also users organize the training
- Those opportunities were announced on the Geant4 collaboration web page

https://www.geant4.org/

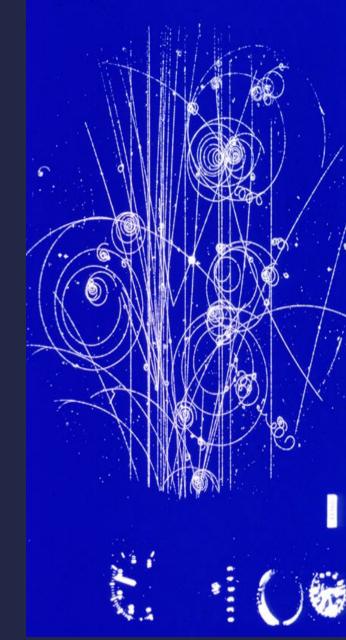
The Genat4 collaboration


- The collaboration is based on a Collaboration Agreement (CA) among the participating laboratories, experiments and national institutes
- Many specialized working groups are responsible for the various domains of the toolkit

Collaboration governance


• Oversight Board

- Representatives of the CA signing body
- Review the report from Steering Board
- Steering Board
 - Election of the spokesperson
 - All the decisions in the collaboration
 - Approvements of the working group activities
- Working groups
 - Send representatives to the Steering Board
 - Independent governance


Spread of Geant4

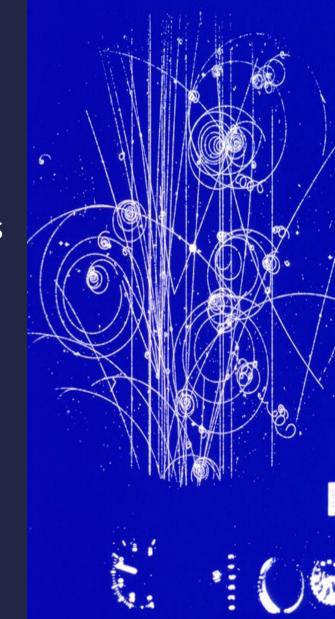
- The first used experiment was BaBar at SLAC
- All LHC experiments, except one experiment, deployed Geant4 for their detector simulation soon
 - The last experiment became a user of Geant4 almost ten years later
- All ongoing HEP experiments are Geant4 users
- ESA started to use Geant4 for their space missions soon
- We see users in medicine more and more every year

Commercial users

- They like open source but not GPLed
 Geant4 License is more like BSD's one
- We identified lots of commercial users at the events, but there are more unknown users
 - Some of them tried to ask a question on our user forum anonymously using a free e-mail address
 - We could imagine their business from their questions
- Some developers from commercial companies
 - Contribution to the development

Great success

- Geant4 is accepted very widely because
 - Open source and free of charges
 - Rich functionality
 - Rich physics
 - Documented very well, and many examples
 - Training opportunities
 - No import/export control
 - Geant4 cannot simulate atomic bombs
- Maintenance and development continued actively over almost 30 years


Geant-X

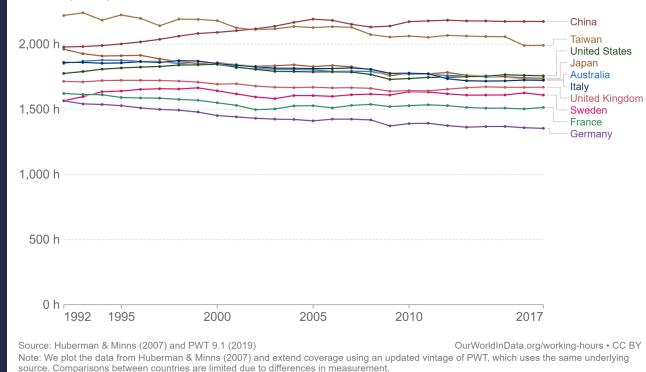
- All attempts to develop the successor of Geant4 failed
 - Geant5
 - The GEANT
- All of them were independent of the Geant4 collaboration
- They tried to start from Geant4
 - Utilize existing code for physics process in Geant4
- They couldn't bring their achievements timely
- No more attempts are following
 - The reason why Geant4 could survive long

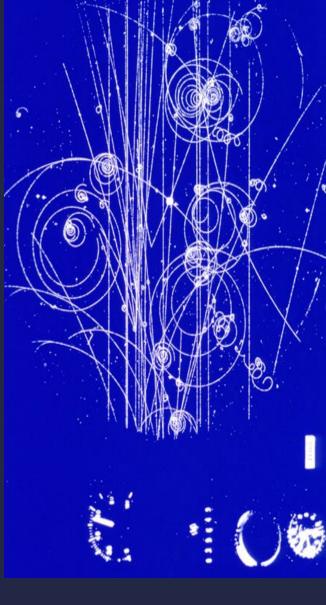
Sociological aspects of software development in a large group

- Leadership
 - Efficient decision-making is the key to the success
 - Good leaders speed up the development
 - Core team (unofficial)
 - Driving force
- Organization
 - Democracy should be respected
 - How could we be very fair to latecomers?
- Collaboration management
 - Internal fights
 - FTEs

Magic of FTE

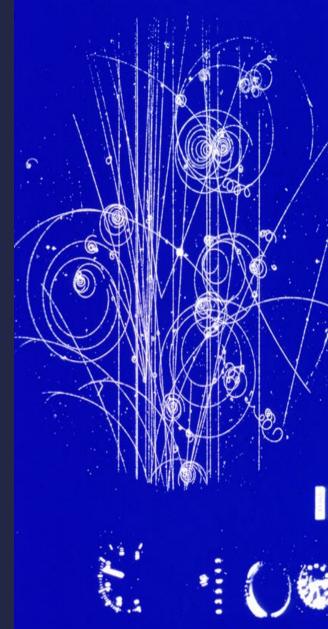
- HEP collaborations evaluated the contribution of individual members and institutions by FTE in percent
 FTE = Full-Time Equivalent
- How many hours are your "full-time"?
- Some declares 100%FTE for the project, but not realistic
- Concrete definition of FTE is necessary




Annual working hours

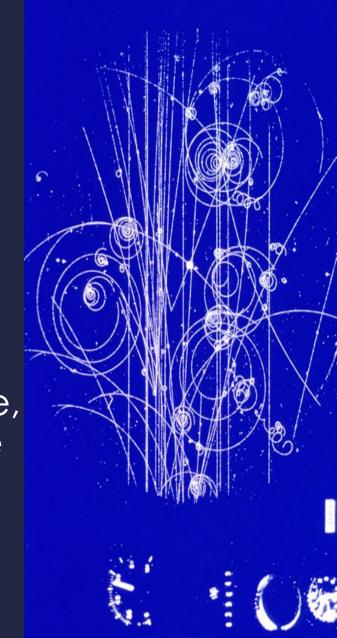
Annual working hours per worker

Our World in Data


Average working hours per worker over an entire year. Before 1950 the data corresponds only to full-time production workers (non-agricultural activities). Starting in 1950 estimates cover total hours worked in the economy as measured primarily from National Accounts data.

Beautiful life

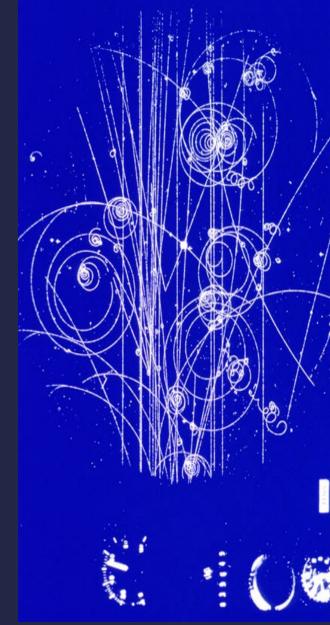
- The life of people in Europe looked like a dream for me
 - Comes late to their office, frequent tea/coffee gatherings, long lunchtime, and goes home earlier
 - Frequent leaves
 - Long Vacation
- I realized that my previous efforts to find a job in the USA were a terrible idea


Securing a job

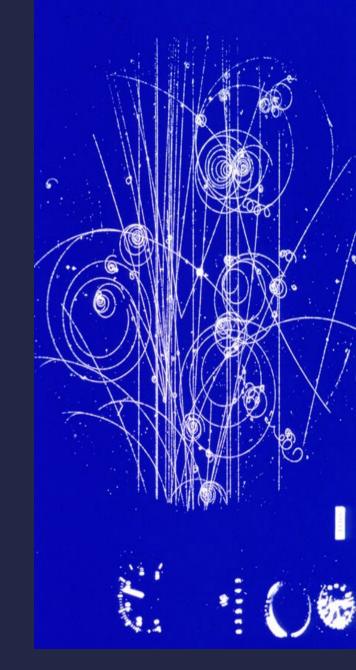
- I found a type of developer who looked very active but ruined the project
 - No design
 - Commit the code with every minor change
 - No backward compatibility very often
 - Their codes are buggy very often, and nobody can maintain
- La raison d'être
 - Those people tried to demonstrate their ability to confuse others
 - Hard competition until obtaining a permanent position
- After those people leave, always huge mess happens

• Stable positions for young talented people

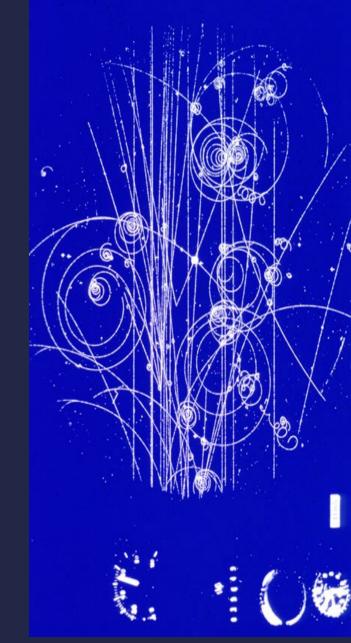
- Too stiff competition among young people results in the waste of their workforce
 - Concentration on their research is necessary for good work
- Compared with the relaxed lifestyle in Europe, the research job situation looked to me more than the nightmare
 - Japanese situation is also abysmal


RD44 days

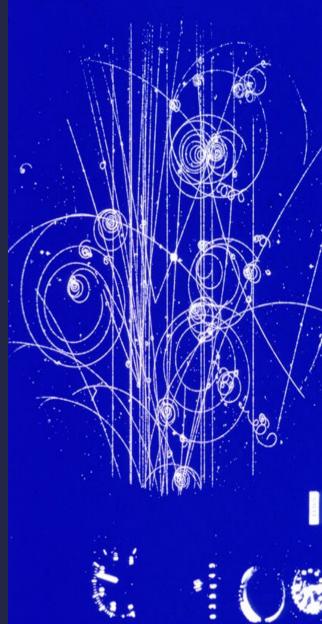
- Mutual understanding and conquering cultural differences were not easy at the beginning
 - Atmosphere in the European collaboration is much different from the USA one for me
- Discussed the design for the first two years
 - Very tired
- Frustrated a lot because people outside attacked us a lot without evidence to say:
 - Programs written in C++ are very slow
 - C++ is not for physicists
 - GEANT3 is enough
 - Geant4 is much slower than GEANT3


Language (natural) in communication

- I heard lots of eccentric English accents (including Japanese) at CERN
 - Amazingly, people understood each other
 - The worst English language spoken to me was the Brooklyn accent until I went to CERN
- I stopped to practice pronouncing English words
 - Instead, I needed the training to hear others
 - Italian English emulation by Japanese works well for European people


"Saucisse, s'il vous plaît"

- Japanese developers visited CERN often during the design and prototyping stage of Geant4
- Soon after I arrived at CERN in the late evening on Sunday, which was my first visit, I was forced to speak in French at the cafeteria to make an order of food
- Learning French helped me to understand French people speaking in English
- Japanese pronounce "G4(じいよん)" as "geant" in French☺

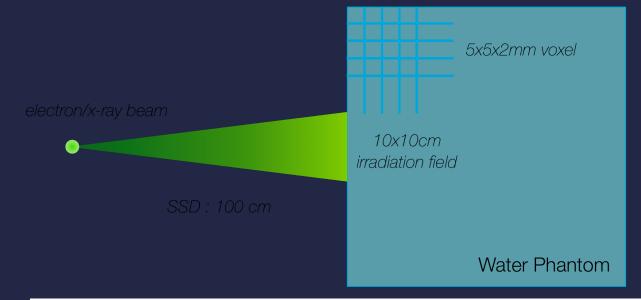

Geant4 developers

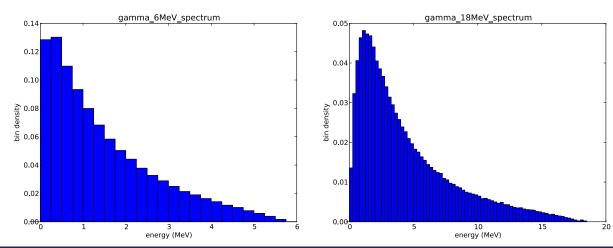
- 1. Hired for Geant4 development and maintenance
 - IP belongs to the employer
 - They provide sustainable user support, not only development
 - CERN Geant4 team
 - SLAC, JLAB and FNAL Geant4 team in the USA
 - ESA contractors are somewhat special
- 2. Volunteers
 - Majority in the collaboration
 - Individual developer holds the IP
 - Reason why many individual names on Geant4 License
 - They often have positions at universities
 - They have the freedom to choose their research topic
 - Most of the Japanese developers are volunteers

Japanese Geant4 developers

- Mostly researchers in universities and KEK, and some postdocs and graduate students
- Works jointly with users for such as medical applications
 - Proton and carbon therapy simulation 2003-
- A new project, MPEXS
 - A CUDA simulator based on the Geant4 expertise

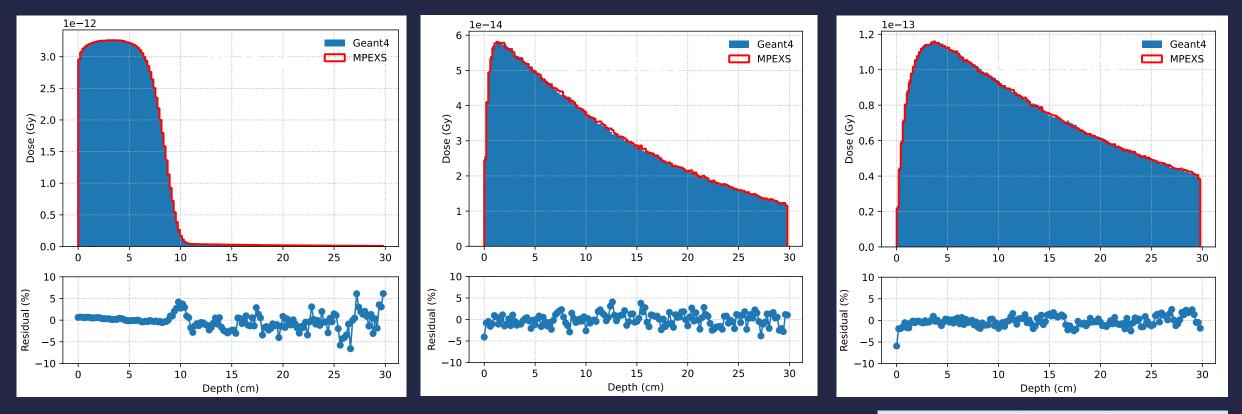
MPEXS


- A CUDA radiation transport simulator
 - Fully based on the Geant4 experiences
- Focused on non-HEP usage
 - Simple geometry but high statistics
 - Conventional physics only
 - No eccentric physics such as PeV muons
 - Code could be very stable
- Decided to go in the opposite direction from Geant4
 - Not an open-source project
 - Academic usage is free of charge, but the contract requested
 - Commercial license



MPEXS EM Physics Benchmark

Particle Sources

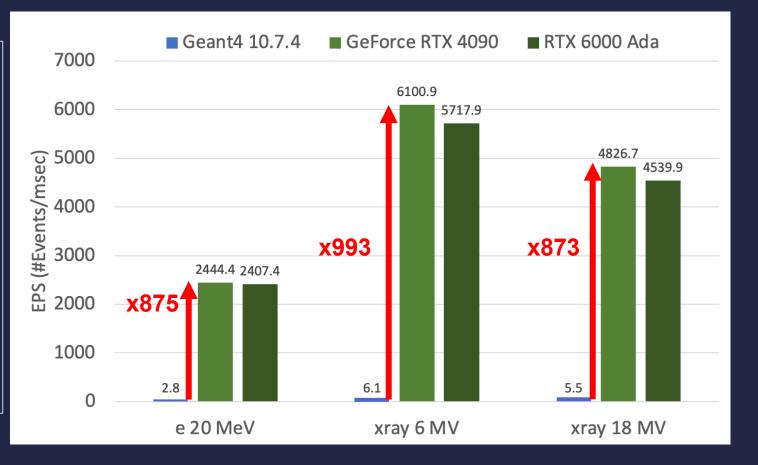

- SSD: 100 cm, Fields size: 10 x 10 cm²
- Mono-energetic source
 - 20 MeV Electrons
- Spread energy source generated by medical Linac
 - 6 MV and 18 MV photons
- Irradiating water phantom with 500 M particles

Depth Dose Distribution for Water

MPEXS reproduces Geant4

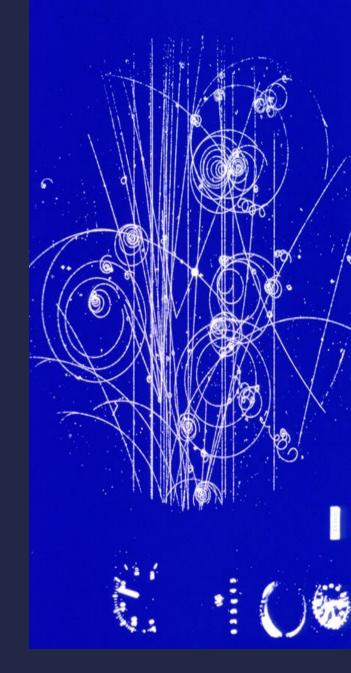
 $Residual(\%) = \frac{D_{MPEXS} - D_{Geant4}}{D_{Geant4}} \times 100$

MPEXS Performance


Up to 1,000 times speedup against Geant4 with a single CPU core

Benchmark Environment

- Alma Linux 9.1 (GCC 11.3.1 + CUDA 12.1)
- CPU
 - Intel Xeon Gold 6326 (Ice Lake)
 - 16 cores/32 threads, 3.5 GHz

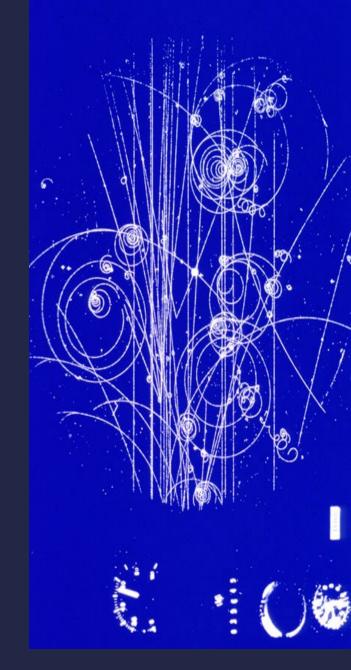

• GPUs

- GeForce RTX 4090
 - 16,384 cores / 2.52 GHz
 - Memory: 24 GB (GDDR6X)
 - Bandwidth: 1,008 GB/s
- RTX 6000 Ada Generation
 - 18,176 cores / 2.50 GHz
 - Memory: 48 GB (GDDR6)
 - Bandwidth: 960 GB/s

MPEXS LLC

- A startup company founded on September 1st, 2022 for MPEXS commercial solutions
 - MPEXS2 series software
- A KEK venture
 - Exclusive contract with KEK to sell MPEXS commercial solutions
 - KEK doesn't have their own TLO
- Target medical users first

Time flies


- Documentation
 - OOD diagrams and documents are no more maintained very well
- Geant4 is NOT GEANT4
 - FORTRAN only allows capital letters, but C++ also allows lowercase letters
 - Our new logo is all in capital letters
 - What a shame!

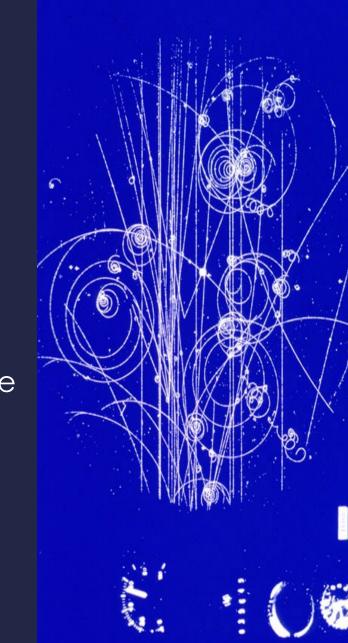
COVID19

- We could work at home without any significant difficulties in the development
 - PC and Internet are essential
- Realized the importance of F2F meeting for mutual understandings
 - We need tight partnerships for successful development
 - Big decisions need a long discussion

What are major difficulties in the long-life project?

• Funding

- Funding agencies tend to fund a new project, but long-existing projects
 - They often say, "Maintenance of something is not research. We fund only research projects."


• Human resources

- New young talents are always necessary for further development and enhancements
- Backward compatibility
 - Existing users don't want a significant change in Geant4 to be required a change on their side
 - Destructive development is necessary sometimes to follow computing environment trend

Summary

- Geant4 endured for three decades with great success
 - We will celebrate the 30th anniversary of Genat4 the next year, 2024
 - Geant4 is the most successful radiation transport software
 - Further improvements and new functionality will come
- MPEXS, a new simulator on GPU, is available for medical physics and some other fields
 - More than 1000 CPU core equivalent computing power with 1 GPU unit (depends on the subject)
- Look forward to seeing the replacement of Geant4 very soon
 - The designed life of Geant4 will come soon

