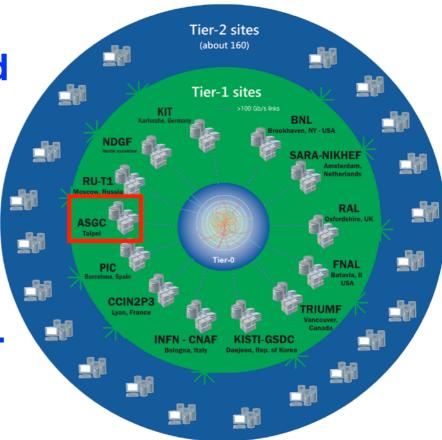


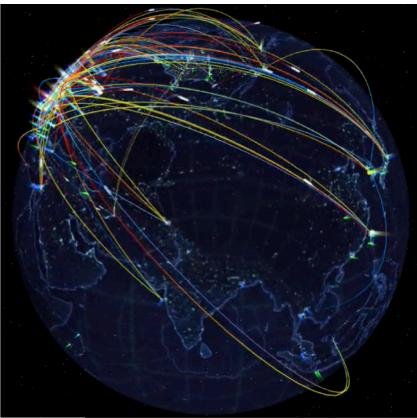
Core Facility for Networking, Science, Technology and Advanced Computing (NSTCCore)

PI: Yuan-Hann Chang co-PI: Eric Yen On behalf of ASGC Institute of Physics, Academia Sinica

NSTCCore Introduction

- Objectives: establish a medium-sized high-performance computing (HPC)/ high-throughput computing (HTC) facility for the research & education community in Taiwan
- Project schedule: 1 June 2023 31 May 2026
- Target Resource Scale
 - Procure ~1,800 CPUcores, 3PB Disk storage, 4PB tape storage every year
 - First year hardware is planned to be online by end of 2023
 - Existing ASGC resource & services (2208 + 768 CPUCores, 3TB group storage) are available before the readiness of new hardware
- Reliability and efficiency are the primary goals
- NSTCCore receives funding from the National Science and Technical Council, grant no. NSTC 112-2740-M-001-003

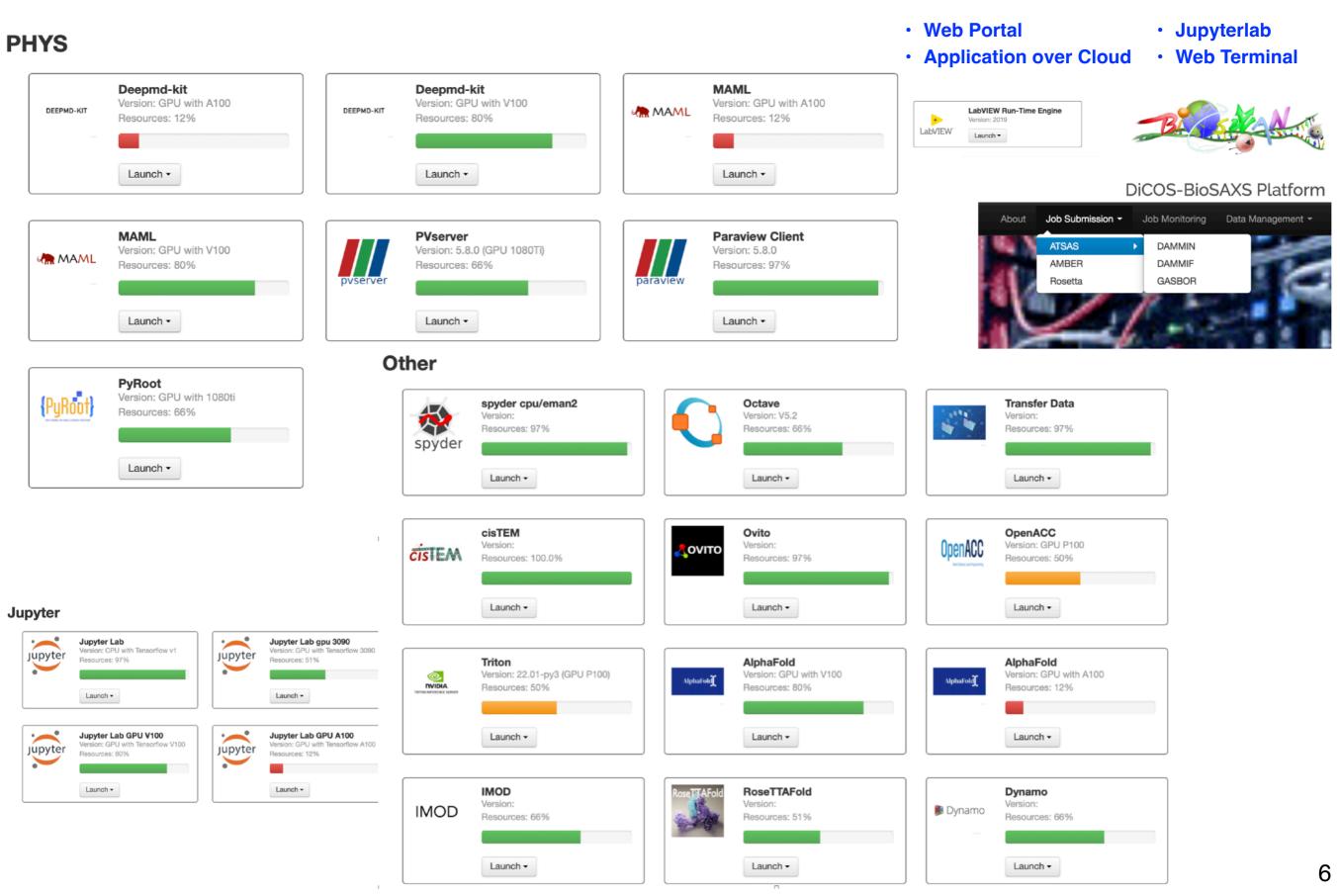


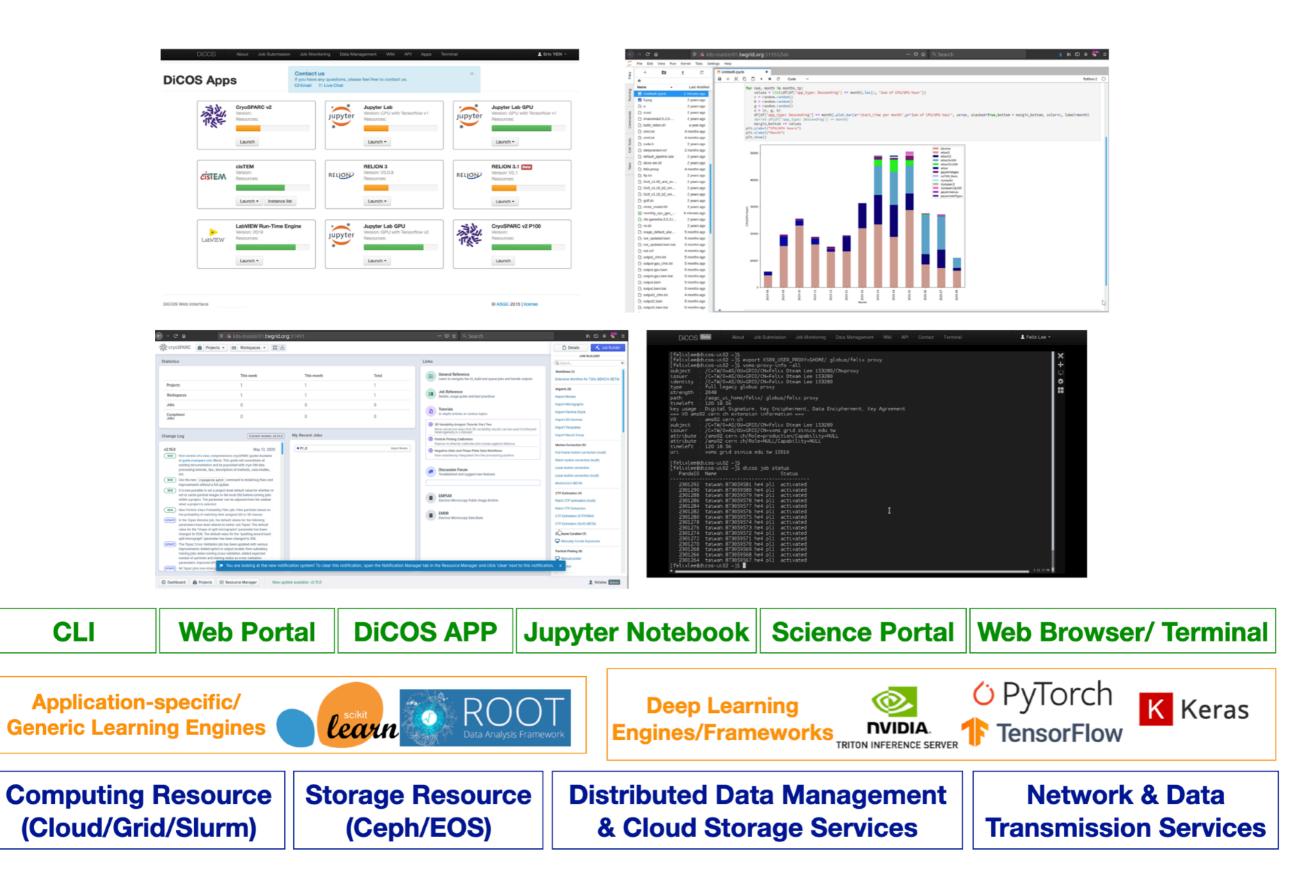

Event Program

- Improving services from users requirements and experiences
- Plan to have 4 events a year
- For training, seminar on scientific computing and big data analysis, user experiences sharing, etc.
- Interaction between users and ASGC supporting team

ASGC Aims To Accelerate Discovery and Innovation

- ASGC joined WLCG development and deployment for the Large Hadron Collider grand challenges since 2001
 - ASGC T1 and WLCG Asian Regional Operation Centre has been operational from 2005
 - Migrating to T2s for ATLAS and CMS (effective from Oct. 2023)
- ASGC has been supporting multi-disciplinary e-Science applications of Academia Sinica from 2006, based on WLCG core technologies
 - The research infrastructure, platform and services are improved progressively along with growing scientific applications of various disciplines
- System efficiency optimization (including power, thermal, system and applications, etc.) is also a strategic goal of ASGC aided by machine learning technologies
- ASGC becomes the Core Facility for big data and scientific computing of AS from 2023




NSTCCore Service

- Accessibility /Account application
 - Group based
- Computing by Slurm and Cloud over CPU & GPU
 - Ease-of-use
 - Web-based UI and Jupyterlab
- Expandable Storage Service typically used for frequently accessed data
 - CephFS supported general purpose storage for computing and any type of data
 - 100GB/account; 3TB/group by default
 - User can pay for more storage space by day or year, TB-basis
- Backup on Tape
 - Data in a specific directory will be backup onto tape automatically
 - Tape system should be available in Q4 2023
 - Benchmark on data migration will be published after the tape system is integrated
- DiCOSApp including Jupyterlab environment
 - Web UI for packaged software environment/ tools
- Training, consulting and problem solving

50+ Web Applications Provided

Supporting Big Data & Al in Innovations

Pricing Model

- Pricing policy will be reviewed by User Committee meeting annually
- Payment scheme
 - Monthly accounting report will be delivered to PI before the 15th each month
 - Payment could be made by transfer, mailed check or pay in counter.
 - Detail account information and payment channels will be explained in the monthly report

Research Service	Pricing		
Computing Service	Based on normalized resource unit (SRU), NTD1/SRU AMD ROME(Core-Day) = 1.1 SRU; NVIDIA V-100(Board-Day) = 140 SRU; A-100(Board-Day) = 346 SRU		
Storage Service	Disk Storage System : 1,500NTD/TB-Year Tape Storage System : 300NTD/TB-Year		
Data Transmission	Free of charge at this moment		
Advanced Service	Charged by working hours (NTD 120,000 per 168 man-hr)		

ASGC 資源使用統計月報表

ASGC Resource Usage Monthly Report

Reporting Period: 01 – 31 July, 2023

Date of Report: 10 August, 2023

PI Group: (Group ID: ASGC)

單位(Institute): 中央研究院 物理研究所

使用費總計(TOTAL COST ESTIMATE): NT \$15,006

Notes

- 總使用費 = (計算資源使用費 + 儲存資源使用費) * 折扣 Total Cost = (Cost of Computing + Cost of Storage) * (1-Discount (%)) \$15,006 = (\$9,950 + \$5,056) * (1-0%)
- 2. 折扣率依據合作模式而定。

Discount rate is defined by collaboration model with ASGC.

• 計算資源使用統計(COMPUTING USAGE OF GROUP) - 使用費(INITIAL COST): 9,950

使用者(username)	姓名(name)	CPU (SRU)	gpu (Sru)	費用 (Initial Cost Estimation)
с	(105	4,864	9,938
rı		3	0	6
t		1	2	6
總計	單價SRU=NT\$2	109	4,866	(109+4,866)*2=9,950

• 儲存資源使用統計(STORAGE USAGE OF GROUP) - 使用費(INITIAL COST): 5,056

帳號 (ID)	名稱(name)	儲存空間用量 (storage(TB))	費用(Initial Cost Estimation)	說明 (note)
ASGC	/ceph/work/ASGC/	10.0	756	day 方案
ASGC	/ceph/project/ASGC/	10.0	300	day 方案
ASGC	/ceph/work/ASGC/	4.0	4,000	year 方 案
總計	單價NT\$/TB-mo=3 NT\$/TB-yr=1000	24.0	(30 day(s) * 6T * 3) + (18 day(s) * 4T * 3) + (2 day(s) * 5T * 3) + (18 day(s) * 1T * 3) + (18 day(s) * 4T * 3) + (4 T * 1000) = 5056	

使用明細(USAGE DETAILED)

使用者(username): c

使用者(username): c								
	#Instance	A100		RTX3090		V100		
		CPU (SRU)	gpu (Sru)	CPU (SRU)	gpu (Sru)	CPU (SRU)	gpu (Sru)	
relion311rtx3090	2			98	4,108			
jupyterlabgpu26a100	1	1	519					
jupyterlabtf24gpu3090	1			5	237			
matlab	1					0	0	

使用者(username): r

	#Instance	FDR5			
		CPU (SRU) GPU (SRU			
FDR5 slurm	63	3	0		

使用者(username): t

	#Instance	1080TI		QDR6		RTX3090	
		CPU (SRU)	gpu (Sru)	CPU (SRU)	gpu (Sru)	CPU (SRU)	gpu (Sru)
relion3	4	0	0				
relion4011080ti	4	1	1				
jupyterlabtf24gpu3090	2					0	0
spyder	2			0	0		
cistem	1			0	0		
relion31	1	0	0				
transferdata	1			0	0		

資源使用說明(Resource Usage Detail): <u>https://dicos.grid.sinica.edu.tw/resources</u>

聯絡專線(Contact): DiCOS-Support@twgrid.org

Collaboration Model

- Pay-as-you-go: using existing resource and services
- Buy-In: joint procurement with ASGC by PI's fund and the procured hardware is shared to all NSTCCore users managed by ASGC
 - Contributor would have priority to the resource and deducted usage fee
- Service Collocation: providing shared services developed by user group(s)
- Advanced or Customized services:
 - charged service by request
 - For shared common services mainly

User Support and Communication

- User Committee will be setup in next few month
 - Represented by user groups or communities
 - < 15 members or 10% of #PI Groups
 - Help review & enhance the services, quality and resource policy, etc.
- Online contact channel
 - email: <u>DiCOS-Support@twgrid.org</u>
 - Rocket.Chat
- Weekly user meeting: 1:20pm every Wed
 - Action items and service status will be reviewed
- Website: news, overview and details of services
 - <u>https://nstccore.twgrid.org</u>

Both Supported Researches and Services Will Keep Growing

- Next project event: planned in Q4 2023
 - Could be thematic seminar, user experiences/case study sharing or more hands-on sessions
- Sustainability: reliability and efficiency
 - Evolving services provided by enhanced information & communication technologies, based on users' requirements
 - Collaborations: with user communities and ICT service providers
 - Flexible Collaboration models turning research needs into services
 - Good level of utilization
- Acknowledgement
 - Please include an Acknowledgment in any publication when research outcomes that relied on resources, services or expertise from NSTCCore project are presented.
 - For example, "This research is partially supported by the NSTCCore project (NSTC 112-2740-M-001-003) running by Academia Sinica Grid Computing Centre (ASGC)."

Support and Service of ML-Enabled Data Analytics by ASGC

- ML/AI application platform service is available NOW SW library, HW, integration and application
 - Build up customized ML platforms for user specified projects Deploy <u>ML packages</u> ready environment in order to help ML development smoothly and provide ondemand computing power
 - Upkeep of the application framework
 - Workflow and data pipeline integration
 - Efficiency Improvement
- Potential use cases
 - Users who bring existing source code ASGC could help to setup a virtual environment and confirm source code running normally
- Approaches
 - Supporting Kubernetes/Jupyter lab for development purpose
 - Create Kubernetes/Jupyter lab environment with user specified ML packages ready.
 - Support on-demand scalable CPU/GPU computing power.
 - Supporting containerized environment (e.g, Docker image) for deployment purpose
 - Create takeout images in Docker format as an option for user who wants to train/predict model
 - Docker images could be downloaded from ASGC server and deployed on users' Docker Desktop on Windows/Linux.

Available Hardware, Software & Use Cases

- GPU Servers (with local SSD enhanced)
 - A100 (8xboards/server, 80GB RAM/board) * 3
 - V100 (8xboards/server, 24GB RAM/board) * 6
 - 3090 (8xboards/server, 11GB RAM/board) * 4
- ML related framework and tools
 - TensorFlow, PyTorch, Keras, NVIDIA Triton, Scikit Learn
- Large-scale storage /file system
 - 8 Petabyte+ disk-based storage system managed by CephFS
 - Tape-based backup storage will be available by end of 2023
- Use Cases
 - CryoEM ML-enabled bioimage processing
 - Deployment of ML-enabled protein simulation tools AlphaFold, RosettaFold & Diffusion, DiffDock
 - Deployment of ML-enabled packages (by IOP PABS group): DeepMD-kit (with interface with LAMMPS)
 - AMS & KAGRA programs developed by local groups
 - Data Center intelligent monitoring & control (ASGC projects): Air Handler, power saving, etc.

ASGC Data Center & Resources

Cooling Power : CPU Power 1:2 No UPS to save 10% power consumption Total Capacity חירייייי • 2MW, 400 tons AHUs 112 racks in ~ 800 m²

- Resources (Apr. 2022)
 - 20,090 CPU Cores
 - 236 GPU Cards
 - 30 PB Disk Storage
 - 2x10Gb links to CERN and primary NRENs worldwide
- WLCG Tier-1 Center since 2005
- Supporting HPC & HTC in Academia Sinica by distributed cloud operating system (DiCOS)
 - Usage > 1M CPUCore-Days in 2015
 - Usage > 2M CPUCore-Days in 2019
 - GPU usage is growing exponentially from 2017
- Reliability: > 99.9% yearly average
- R&D on system efficiency optimization by intelligent monitoring & control

All software used are open-source codes developed by ASGC and an international collaboration led by CERN

NSTCCore Services

- Project Website: <u>https://nstccore.twgrid.org</u>
- Access to ASGC Resources
 - https://dicos.grid.sinica.edu.tw/
- Contact point: DiCOS-Support@twgrid.org

Backup Slides