
Advanced Computing Jobs:

Develop Multicore and GPU HPC Programming
on SaaS Environment using Jupyter Lab

Chan-Hin IONG
2023/08/01

.

1.
2.
3.
4.
5.
6.
7.

Introduce NVIDIA SDK
Jupyter Lab
Simple way to monitor cpu cores and GPU
Running C++ 17 example on Jupyter Lab
Running Larger C++ example
OpenMP for multicore and GPU
Running OpenMP simple examples

.

Compilers in NVIDIA HPC SDK

https://docs.nvidia.com/hpc-sdk/archive/20.11/index.html

nvc
nvc is a C11 compiler for NVIDIA GPUs and AMD, Intel, OpenPOWER, and Arm CPUs. It
invokes the C compiler, assembler, and linker for the target processors with options derived
from its command line arguments. nvc supports ISO C11, supports GPU programming with
OpenACC, and supports multicore CPU programming with OpenACC and OpenMP.

nvc++
nvc++ is a C++17 compiler for NVIDIA GPUs and AMD, Intel, OpenPOWER, and Arm CPUs.
It invokes the C++ compiler, assembler, and linker for the target processors with options
derived from its command line arguments. nvc++ supports ISO C++17, supports GPU
programming with C++17 parallel algorithms (pSTL) and OpenACC, and supports multicore
CPU programming with OpenACC and OpenMP.

nvfortran
nvfortran is a Fortran compiler for NVIDIA GPUs and AMD, Intel, OpenPOWER, and Arm
CPUs. It invokes the Fortran compiler, assembler, and linker for the target processors with
options derived from its command line arguments. nvfortran supports ISO Fortran 2003 and
many features of ISO Fortran 2008, supports GPU programming with CUDA Fortran and
OpenACC, and supports multicore CPU programming with OpenACC and OpenMP.

nvcc
nvcc is the CUDA C and CUDA C++ compiler driver for NVIDIA GPUs. nvcc accepts a range
of conventional compiler options, such as for defining macros and include/library paths, and
for steering the compilation process. nvcc produces optimized code for NVIDIA GPUs and
drives a supported host compiler for AMD, Intel, OpenPOWER, and Arm CPUs.

.

.

https://dicos.grid.sinica.edu.tw/dockerapps/

.

.

CPU monitor

GPU monitor

Working
space

.

single core job

multicore job
cpu usage > 100%

.

CPU monitor

.

GPU monitor

Basic for-loop

for (Index_t i = 0; i < data.size(r); ++i)
{

}

Parallel algorithm for-loop running on Multicore or GPU

 std::for_each_n(std::execution::par, counting_iterator(0),data.size(r),
 [=, &domain](Index_t i)
 {

 }
);

Modern C++ new features for Parallel computing

.

Algorithms and execution policies

To download examples source code:

git clone https://github.com/ASGCOPS/Advanced_Computing_Job_2023
cd Advanced_Computing_Job_2023
unzip HPC_src.zip
cd material

Simple code for multicore and GPU

Running on single core CPU
cpu usage ≤ 100%

Running on multicore CPU
cpu usage > 100%

.

include files for C++17

To compile the code and run :

(1) Setup the NVIDIA HPC SDK envirnoment:
source /cvmfs/cvmfs.grid.sinica.edu.tw/hpc/nvhpc_sdk/2021_217/setup.sh

(2) Change your working directory:
cd 01_c_plus_plus_simple_example_mcore_gpu

(3) Compile source code for multicore:
nvc++ -stdpar=multicore example.cc

(4) Or compile source code for GPU:
nvc++ -gpu=cc80 -stdpar=gpu example.cc

(5) run
./a.out

.

For GPU A100 and RTX3090, the GPU capability is cc80

Larger example: LULESH
https://github.com/LLNL/LULESH/tree/2.0.2-dev/stdpar

C++ Algorithms / Policies in LULESH

.

To compile the code and run :

(1) Setup the NVIDIA HPC SDK envirnoment:
source /cvmfs/cvmfs.grid.sinica.edu.tw/hpc/nvhpc_sdk/2021_217/setup.sh

(2) Change your working directory:
cd 02_c_plus_plus_LULUSH_mcore_gpu/build

(3) Edit the Makefile:

For multicore:
CXXFLAGS = -w -fast -Mnouniform -Mfprelaxed -stdpar=multicore -std=c++11 -DUSE_MPI=0

For GPU:
CXXFLAGS = -w -fast -Mnouniform -Mfprelaxed -stdpar=gpu -std=c++11 -DUSE_MPI=0

(4) Compile
make clean
make all

(5) Run
./lulesh2.0

Makefile

.

OpenMP Directive

#pragma omp target teams distribute parallel for
for (Index_t i = 0; i < data.size(r); ++i)
{

}

OpenMP for MCORE / GPU

Basic For-loop

for (Index_t i = 0; i < data.size(r); ++i)
{

}

.

Simple OpenMP example

Initialize arrays by single core cpu
cpu usage ≤ 100%

Transfer data to GPU memory
map(to: a[0:N-1])

Calculate c[i] += a[i] +b[i] on GPU

Get result from GPU memory
map(from: c[0:N-1])

Calculate by multicore cpu
cpu usage > 100%

.

CPU

GPU

To compile the code and run :

(1) Setup the NVIDIA HPC SDK envirnoment:
source /cvmfs/cvmfs.grid.sinica.edu.tw/hpc/nvhpc_sdk/2021_217/setup.sh

(2) Change your working directory:
cd 03_openmp_simple_example_mcore_gpu

(3) Compile source code for multicore:
nvc++ -stdpar=multicore 01_omp_target_study.cc

(4) Or compile source code for GPU:
nvc++ -gpu=cc80 -stdpar=gpu 01_omp_target_study.cc

(5) run
./a.out

.

Simple OpenMP example

.

To compile the code and run :

(1) Setup the NVIDIA HPC SDK envirnoment:
source /cvmfs/cvmfs.grid.sinica.edu.tw/hpc/nvhpc_sdk/2021_217/setup.sh

(2) Change your working directory:
cd 03_openmp_simple_example_mcore_gpu

(3) Compile source code for multicore:
nvc++ -gpu=cc80 -stdpar=multicore 02_omp_reduction.cc

(4) run
./a.out

.

	Title
	content
	nv sdk
	DiCOS APP
	Jupyter Lab
	multicore
	monitor GPU usage
	C++17
	download src
	Simple example
	Untitled
	Larger example
	Untitled
	OpenMP
	ex1
	run
	ex2
	run

