

The Data Management and Data Service for HEPS

Hao Hu, Haofan Wang, Qi Luo, Bo Zhuang, Fazhi Qi
IHEPCC/HEPSCC
Institute of High Energy Physics, CAS

Outline

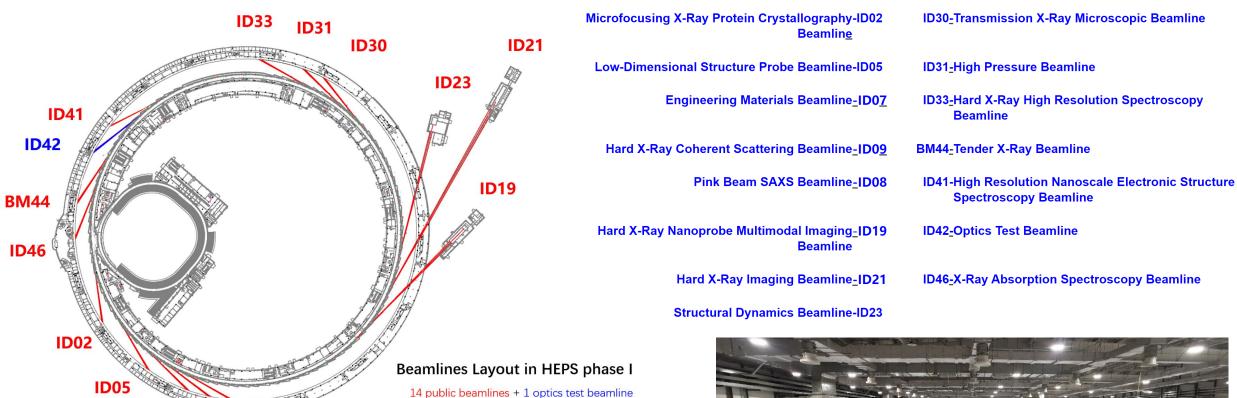
- 1. HEPS Introduction
- 2. Demands and Challenges of data management
- 3. The system design and implementation
- 4. Summary & Plan

1. HEPS Introduction

- 2. Demands and Challenges of data management
- 3. The system design and implementation
- 4. Summary & Plan

High Energy Photon Source (HEPS)

中国科学院為能物程研究所 Institute of High Energy Physics Chinese Academy of Sciences

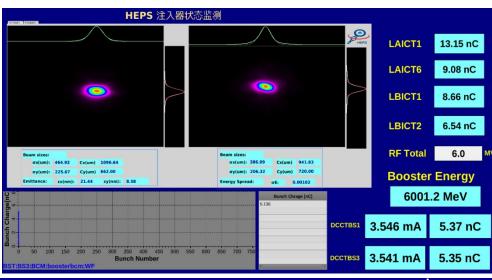

- The fourth generation light source in China High energy, high brightness
- Located in Beijing about 80KM from IHEP
- Officially approved in Dec. 2017, started in 2018
- The whole project will be finished in mid-2025
- The construction of the civil structure is completed

Main parameters	Unit	Value
Beam energy	GeV	6
Circumference	m	1360.4
Emittance	pm∙rad	< 60
Brightness	phs/s/mm²/mrad²/0.1%BW	>1x10 ²²
Beam current	mA	200
Injection		Top-up

Beamlines in HEPS phase I

14 public beamlines + 1 optics test beamline in Phase I Can accommodate over 90 beamlines in total

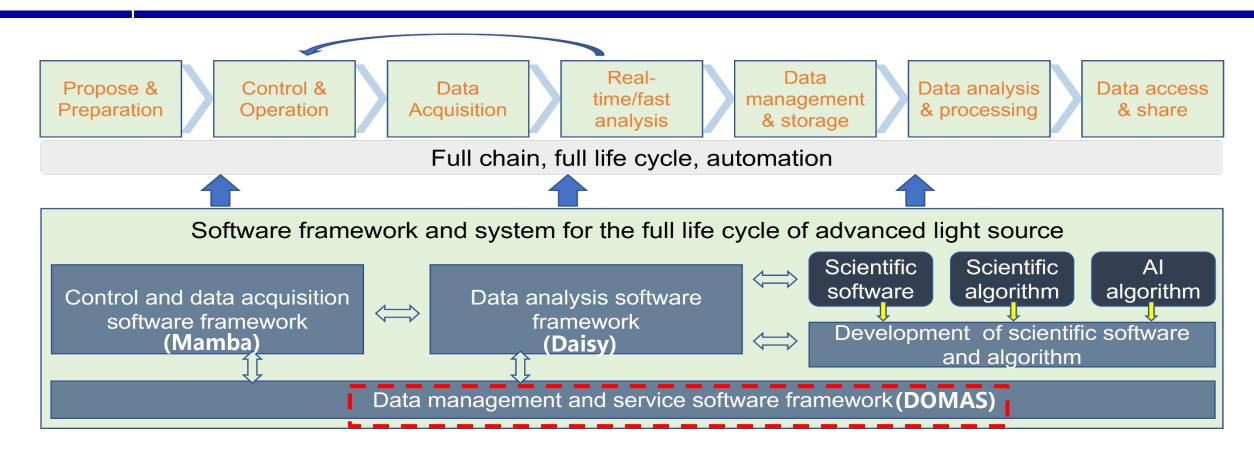
ID07


Progress of the HEPS project

- Now at the stage of beamline station equipment installation and joint commissioning.
- 2023.01, HEPS booster installation completed
- 2023.03, HEPS achieved the first electron beam accelerated to 500 MeV.
- □ 2023.11, The beam energy of the HEPS booster has reached 6GeV,
 - with a charge exceeding 5nC.
- □ 2023.12, HEPS storage ring has been closed-looped.

- 1. HEPS Introduction
- 2. Demands and Challenges of data management
- 3. The system design and implementation
- 4. Summary & Plan

Data Challenges @HEPS


- Increased source brightness, X-ray detector capabilities have been continuously improving
- ☐ More than 24PB raw data will produced per month

Beamlines	Burst output(Byte/day)	Average output(Byte/day)
B1 Engineering Materials Beamline	600TB	200TB
B2 Hard X-ray Multi-analytical Nanoprobe (HXMAN) Beamline	500TB	200TB
B3 Structural Dynamics Beamline (SDB)	8TB	ЗТВ
B4 Hard X-ray Coherent Scattering Beamline	10TB	ЗТВ
B5 Hard X-ray High Energy Resolution Spectroscopy Beamline	10TB	1TB
B6 High Pressure Beamline	2TB	1TB
B7 Hard X-Ray Imaging Beamline	1000TB	250TB
B8 X-ray Absorption Spectroscopy Beamline	80TB	10TB
B9 Low-Dimension Structure Probe (LODISP) Beamline	20TB	5TB
BA Biological Macromolecule Microfocus Beamline	35TB	10TB
BB pink SAXS	400TB	50TB
BC High Res. Nanoscale Electronic Structure Spectroscopy Beamline	1TB	0.2TB
BD Tender X-ray beamline	10TB	1TB
BE Transmission X-ray Microscope Beamline	25TB	11.2TB
BF Test beamline	1000TB	60TB
Total average:		805.4TB/day, 24.16PB/month

Estimated data volume of HEPS at Phase I

Huge amount of data is a big challenge for data management and processing

Full lifecycle software system for HEPS

- □ Software system for the full data lifecycle of light source experiments
- □ Data management and service is the essential component and provide the interface for data access

Tasks of HEPS Data Management

Data policy and Data Format

- Establish rules and regulations about data management
- Design HDF5 data file format for each beamline, follows NeXus conventions

Metadata catalogue

- Design metadata model, catalogue, metadata database
- Provide access to metadata and experimental data

Metadata acquisition

Acquire metadata from other sub-systems(DAQ, transfer, storage, analysis...)

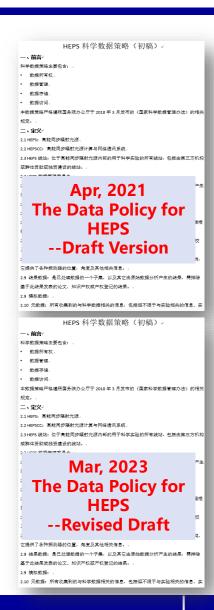
Data transfer

- Transfer data automatically: beamline storage → central storage → tape
- Interact with metadata catalogue when the data storage status changed

Data service

Provide a web-based GUI for user to search, access, download, analysis data

- 1. HEPS Introduction
- 2. Demands and Challenges of data management
- 3. The system design and implementation
- 4. Summary & Plan

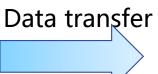

HEPS Data Policy

The ownership, curation, archiving and access to scientific data and metadata

- Recommend to provide at least 3 months disk storage and permanent tape archive
- Provide permanent storage for raw data
- Provide temporary storage for processed data and calibration data
- Each dataset will have a unique persistent identifier(CSTR/DOI)
- Experimental teams have sole access to the data during the embargo period
- After the embargo, the data will be released with open access to any registered users of the HEPS data portal

Apr. 2021, The Data Policy for HEPS(draft) is finished.

Mar. 2023, The Data Policy for HEPS(draft) is revised after a lot of discussion.



Data storage policy

- Raw data produced from detector are saved to beamline storage directly, up to 7 days
- 2 Data is moved from beamline storage to central storage, data are kept up to 90 days
- 3 Data is moved from central storage to tape for long-term storage

Data storage policy will be adjusted according to the actual data volume and funding situation

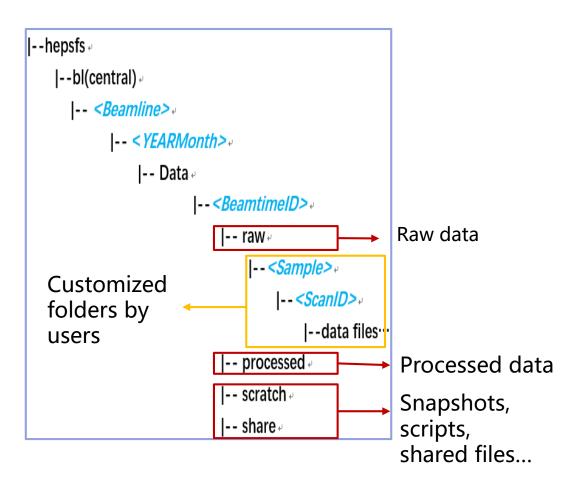
Detector DAQ system

Beamline storage

- SSD
- High speed data IO

Central storage

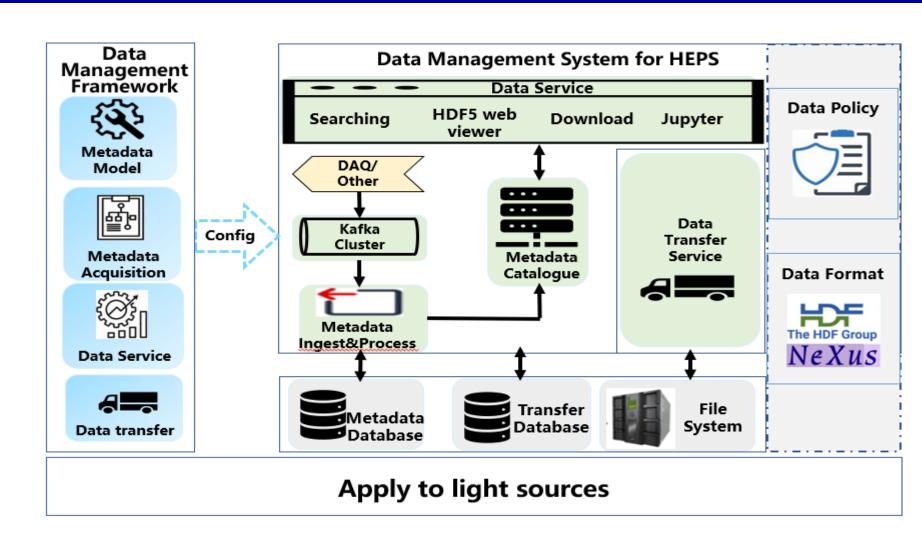
- HDD
- Medium-high speed data IO


Tape

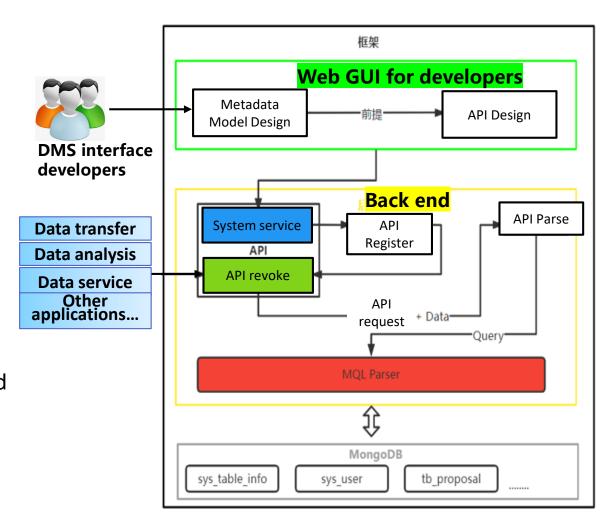
- Permanent data archive
- Prepare the data before retrieve

Data directory and permission

- ☐ The data is organized under the related BeamtimeID directory
- □ Data path : ../ < Beamline > / < Year Month > / Data / < Beamtime ID >
- User access control is restricted by setting ACLs of file system on *BeamtimeID* folder
- ☐ Users will be guided to use the directories accurately

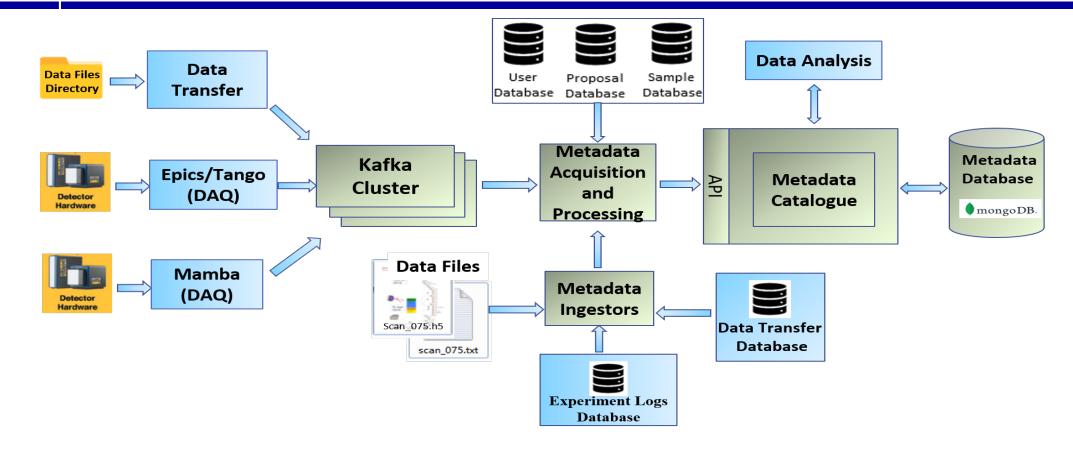

Folder	Data type	Permission	Permanent archive?
raw	Raw data/user data	Read only	Yes
processed	Processed data	Read, write	No
scratch	Temp data, snapshots, scripts,	Read, write	No
share	Snapshots, scripts, shared files	Read, write, shared	No

Data directory structure


Data management software framework-DOMAS

- Functional modules
 - ✓ Metadata catalogue
 - ✓ Metadata acquisition
 - ✓ Data transfer
 - ✓ Data service
- Extensible and standard interface
- Be used to build data management system for light sources quickly
- Will be open-sourced progressively

Metadata catalogue

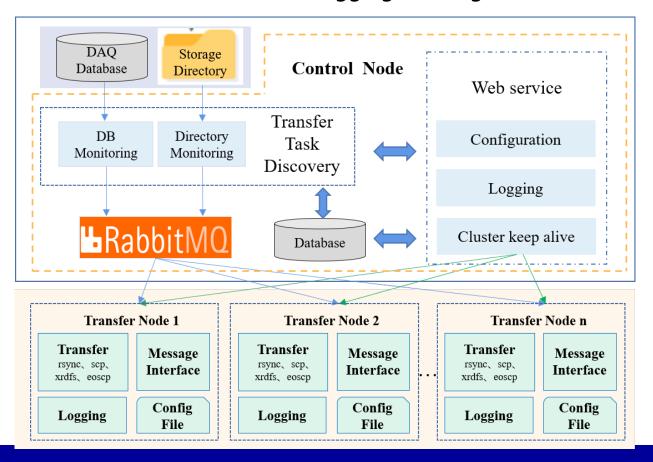

- Stores metadata into database and provides APIs to access metadata
- Use MongoDB as the database because of the complicated metadata
- A tool is developed to generate RESTful API automatically from metadata models
 - Interface developer design metadata models and create interfaces from web GUI
 - 2. The metadata models and interfaces can be parsed, verified and processed
 - 3. The APIs can be revoked by other system/modules

Metadata items to be cataloged

Metadata	Metadata Items	From		
♦ Administrative	Proposal Info, User Info, Exp types, Beamlines			
Metadata	 Data type: raw data, processed data, simulated data, calibration data 	Proposal system, User service system,		
	Dataset: PID, Path, Data file list, file size, checksum	 Transfer system, Storage, 		
	• Status: disk/tape, transfer status, transfer check value	_ Analysis system		
	Analysis software, update time			
	Sample Info	Sample database, Proposal system,		
◆ Scientific Metadata	Experimental environment: voltage, magnetic field, electric field	DAQ system, Control system		
	Detector Info: scan, x-ray exposure params			
	• E-log	E-log System		

Metadata acquisition

Kafka cluster


- Acquire metadata from multi-sources
- High reliability for metadata acquisition

Metadata ingestor plugins

- flexible development and deployment
- Make up for lack of interfaces

Data transfer

- Cluster deployment: control node + transfer node
- Control node: transfer task discovery, RabbitMQ, web service for configuration, Logs and cluster management
- Transfer node: transfer, logging, message interface

Features

- Transfer task discovery
 Directory monitoring, Database polling
- 2) Transfer
 - Transfer protocols: rsync/scp/xrdfs/eoscp
 - Cluster deployment and multithreaded transfer
 - Checksum validation, retransmission
- 3) Configuration

 Transfer task discovery, interface, logs, cluster...
- 4) Logging and monitoring log information related to transfer failures and exceptions

An universal data transfer software, is used in other experiments (JUNO, LHAASO...)

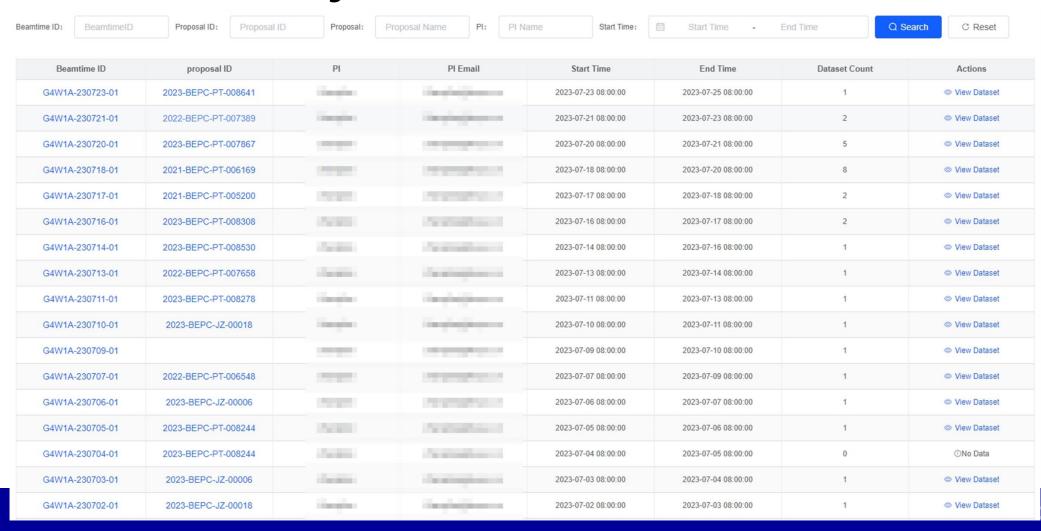
Data service (1)-- Dedicated computer terminal

The dedicated computer terminal for data downloading

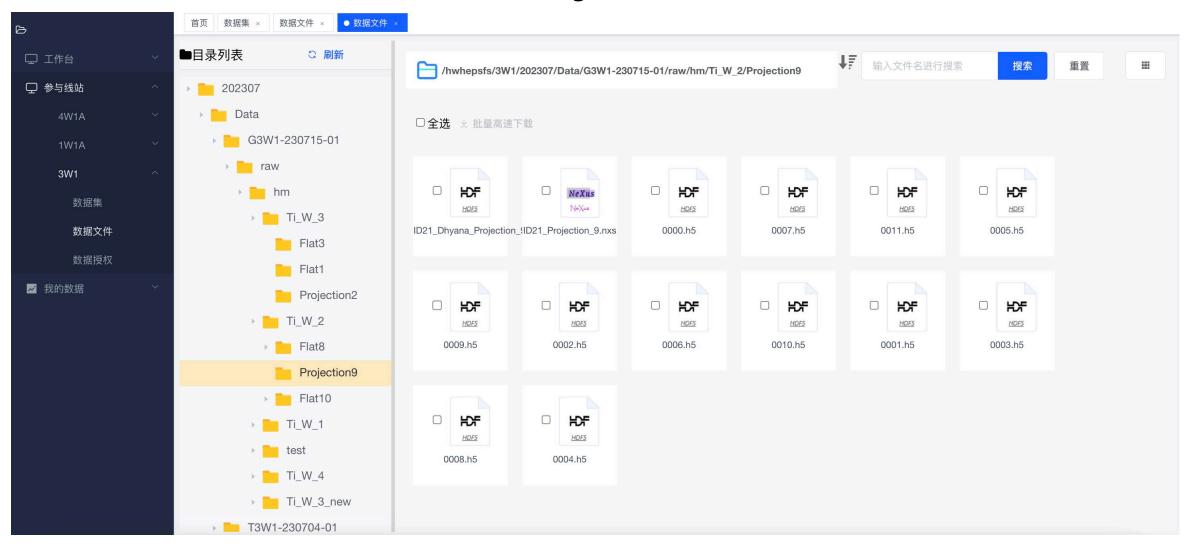
placed at user center/user lounge

suitable for downloading huge volume of data

supports different storage device interfaces (NAS, disk array, mobile hard disk)


Raw data +processed data

Data service (2)--Data Web Portal


Data search, download, access, analysis

■ Dataset search through metadata retrieval

Data service (2)-- Data Web Portal

Browse and download data files in storage

Data service (2)-- Data Web Portal

Integrate a client for downloading

- Maximizes the utilization of network bandwidth
- Greatly improves the download speed

批量等	京户端高速下载 批 <u>里普通下</u> 载	客户端安装▼				
	数据集	BeamtimelD	样品	PI	PI Email	操作
~	20220720_KIDNEY_66	GB06-20220629-01		张建国	zjgbit@bit.edu.cn	查看数据 客户端高速下载 普通下载
	20220720_KIDNEY_64	GB06-20220629-01		张建国	zjgbit@bit.edu.cn	查看数据 客户端高速下载 普通下载
~	20220720_KIDNEY_63	GB06-20220629-01		张建国	zjgbit@bit.edu.cn	查看数据 客户端高速下载 普通下载
	20220720_KIDNEY_61	GB06-20220629-01		张建国	zjgbit@bit.edu.cn	宣看数据 客户端高速下载 普通下载

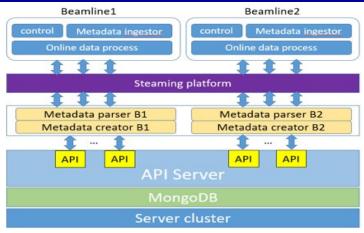
■ Download speed test: 4*4.49GB files

	Bandwidth	Duration	Speed
LAN	1000Mbps	2min52sec	839Mbps
WAN	100Mbps	28min	85Mbps

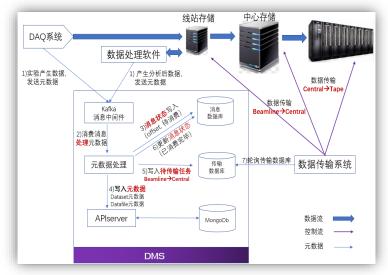
Transmission Speed				File List (4/4)			
Start time: 2022-08-08 13:18:09 End time:		me: 2022-08-0	e: 2022-08-08 13:22:07 Total time		me: 3m 58s		
No.	Local path	Server path	Size	Progress	Status	Speed/Error	
1	D:/whftest/64_0.h5	/hepsfs/central/	4.49GB	100.00%	completed	-	
2	D:/whftest/66_0.h5	/hepsfs/central/	4.49GB	100.00%	completed	-	
3	D:/whftest/63_0.h5	/hepsfs/central/	4.49GB	100.00%	completed	-	
4	D:/whftest/61_0.h5	/hepsfs/central/	4.49GB	100.00%	completed	-	

The progress of data management

1. Finished the core functional modules


- ✓ Metadata catalogue, metadata ingestion, data transfer, data service
- ✓ Interfaces with other systems, control system, transfer module, storage system, analysis system
- ✓ Implement automatic data transfer between hierarchical storage
 (beamline storage → central storage → tape)

2. Provide plans for data management when network interrupts


- ✓ when network interrupts, metadata and data are saved to local disk
- ✓ After the network recovers, metadata will be sent to be catalogued

3. HEPS data format design

✓ Designed and released data format for 7 beamlines

Metadata catalogue

Automatic data management flow

HEPS CC system integration/Test bed/Production

Set up testbed at BSRF to integrate full lifecycle software systems to verify interfaces and process. HEPS CC system has been tested in the real experimental environment, moved to production gradually.

Oct, 2020, BSRF 1W1A

Simple verification of the data management system

- Network bandwidth is 1Gb/s
- Beamline storage: 2TB NAS, Dell EMC NX3240, NFS file system
- Central storage: 80TB disk array, Lustre file system
- Metadata ingest, catalogue, data transfer, data service

July, 2021, BSRF-3W1 test beamline

- Network bandwidth updated to 10Gb/s
- Beamline storage & Central storage: 80TB disk array, Lustre file system
- Integrate MAMBA, DMS, Daisy, computing system

_

July, 2023, BSRF 4W1B/1W1A/4W1A

Running in production environment

- · Network bandwidth updated to 25Gb/s
- Beamline storage: Huawei Ocean Store 9950
- Central storage: 80TB disk array, Lustre file system
- Follow real experiment process, provide Pymca to do analyzing

Data acquisition
Analysis framework Interface CT reconstruction

Integration test at BSRF

Outline

- 1. HEPS Introduction
- 2. Demands and Challenges of data management
- 3. Data management software framework-DOMAS
- 4. The system design and implementation
- 5. Summary & Plan

Summary & Plan

- DOMAS is developed and will be released as open-sourced progressively
- HEPS Data Management System(DMS) has been implemented
- ●HEPS DMS is integrated, verified and running stably at 4W1B/1W1A/4W1A of BSRF
- •The deployment of HEPSCC system on the HEPS Campus is on going, waiting for integration and testing
- Promote the application of DOMAS at SHINE and HALF
- Keep on cooperating with other light source facilities and communities

Thank you for your attention! Comments or suggestions?