
Towards the Future: DiracX
26/03/2023 ISGC

Alexandre Boyer, Christopher BURR, Christophe Haen, Federico Stagni, Andrei tsaregorodtsev 

A Modern Incarnation of the DIRAC Framework



What is DIRAC

● A software framework for distributed computing
● A complete solution to one (or more) user community
● Builds a layer between users and resources 

● Developed by communities, for 
communities

○ Open source (GPL3+), GitHub hosted
○ Python 3
○ Publicly documented, yearly users workshops, open 

developers meetings and hackathons 
○ Deployed mostly via Puppet on VMs (really, not 

bound to any specific technologies)

● The DIRAC consortium as 
representing body

Slide that has been 
presented for years, 

with minimal 
variations

In summary: 
DIRAC is an open 
source project and 
the governing body 
includes institutes 

behind other 
experiments.

LHCb is the driving 
force behind the 
developments.

2

https://github.com/DIRACGrid
http://dirac.readthedocs.io/en/latest/index.html
https://indico.cern.ch/event/852597/
http://indico.cern.ch/category/4205/
https://indico.cern.ch/category/4205/


Installations and communities

3

A framework shared by multiple experiments/projects, 
both inside HEP, astronomy, and life science

Experiment agnostic
Extensible

Flexible



Brief history
● 2000: Started in LHCb as an MC production system 
● 2002: “DIRAC2”, python, xml-rpc, Grid, DataChallenge 04 

(Pilot jobs) 
● 2006: “DIRAC3” 3 year long full refurbishment (DISET, 

Configuration SYstem, Accounting, etc)
● 2008: Multi-VO, split into “vanilla” and extensions, DFC

4



Successful project

5

● Project evolving from an experiment specific to a 
general-purpose one

● Pilot based architecture adopted by all the LHC 
experiments and multiple grid infrastructures

● Rare example of an efficient complex solution 
○ Both WMS and DMS at a scale

● Contributions from more that a hundred developers 
during 20 years of the project life
○ Plus specific extensions



Today’s DIRAC (py3) stack

6

DIRAC WebAppDIRACDIRACOS2 Pilot

Conda-based 
package 

“manager”

Client and 
Server code

What holds the 
business logic

ExtJS6 + 
python layer

“The Pilot that 
flies in all the 

skies”

DB12diraccfg WebApp
Resourcestornado



DIRAC issues

7

● Complex, with high entrance bar
● Somewhat cumbersome deployment
● Late on “standards”
● Oldish design
● Not very developer friendly
● multi-VO is an afterthought
● No clear interface to a running DIRAC service
● Custom WebApp



DiracX

8

● DIRAC is old and is filled with technical debt
○ Attempts to make major change now systematically fail (OAuth2, HTTPS)

● DIRAC was very well thought out with a solid foundation
○ Wasn’t clear what a “Grid” even was when it started

● DiracX is a new approach, learning from the past 20 years
○ Learn from 20+ years of DIRAC
○ Tens of years of developer experience



DiracX: requirements list

9

● Make authentication transparent to users (no certificate errors)
● Simpler interfaces and clearer errors
● First class Multi VO support
● More flexibility (e.g. access via HTTPS without a DIRAC client)
● More stable releases
● Simpler installation and configuration
● Easier to maintain extensions (especially for the webapp)
● More accessible to new developers



Standard logging methods

10



Change in Internal Auth/Autz model
● DIRAC:

○ X509 proxies
○ Identity based (DN + group)
○ Config lookup to 

assess permissions
● DiracX:

○ Tokens
○ Permissions embedded 

in the token
○ Oauth flows

● The change should be:
○ Transparent to users
○ More flexible for experts

● Security model

11

https://github.com/DIRACGrid/diracx/blob/main/security_model.md


Architecture: DIRAC
● DB classes connects to the databases
● Services expose the DB classes to Clients
● Agents are cron-like job executing periodic tasks
● Clients are called by Agents, scripts, API, etc
● WebApp calls Services directly or uses Clients

Reminder: pretty much everything is custom (protocol, 
serialization, plotting, etc)

12



Architecture: DiracX

13



Services -> FastAPI
High performance framework and widely used at scale

Designed for easy prototyping and development

Removes a lot of low level code and boilerplate

Standards based

14

https://fastapi.tiangolo.com/

https://fastapi.tiangolo.com/


Swagger/ReDOC

Swagger/redoc generate interactive documentation from the JSON

Included in FastAPI by default
15



Agents -> Celery

16

● We need more than just API calls
● Long running “things” (seconds -> hours)
● Covers “Agents”, “Requests” and “Executors” in DIRAC

● Will be turned into asynchronous tasks
● Celery works well for this and is widely used



Clients
● Auto generated from the OpenAPI json generated by FastAPI
● Using Autorest

○ Developed by Microsoft for Azure and used by 
DigitalOcean

○ Supports many languages including Python

17



WebApp Evolution
DIRAC

● Highly custom: not based on a framework (not easy to 
modify, lack of support)

● Based on vendor lock-in libraries: components rely on 
ExtJS, which requires a custom compiler to work

● Tightly coupled with DIRAC itself

DiracX

● Similar requirements as for DiracX itself
● Typescript, NextJS, React, Material UI

18



The new WebApp

19



Deployment
● DIRAC: custom scripts, manual work, based on runit (build our 

own RPM as no longer maintained)
● DiracX:

○ Kubernetes - Standard to define a distributed system
○ Separate infrastructure from applications

■ “Please IT department(/cloud provider) run this for me”
○ Helm gives the ability:

■ to parameterise
■ distribute a kubernetes config

20



DiracX Helm chart
● https://github.com/DIRACGrid/diracx-charts

● How can you use it?
○ If your institution provides a kubernetes service: use it
○ If you work with public clouds: use their container services
○ If you’re a smaller install: use a lightweight option (k3s/k0s/rke2)

● This is used for:
○ DiracX testing (GitHub actions)
○ Local development instance
○ Running a demo instance
○ Running various DIRAC test instances
○ Soon: running production instances

21

https://github.com/DIRACGrid/diracx-charts


Migration

22

● Minimise operational work to migrate
● Avoid disruptive changes
● Don’t need hard things (downtimes, schema changes)
● Make the transition as simple as possible



Service migration
Current situation has:

● MySQL database
● DIPS service using a DB class
● DIRAC Client class

23



Service migration
The MySQL DB stays the same.

Develop in parallel:

● FastAPI router
● Async SQLAlchemy DB class
● Modern API + CLI + tests

24



Service migration
Once diracx service is ready, add 
a “legacy adaptor”

25



DiracX Status

26

v8.0

DIRAC 
stack

May 2022

Oct 2023

v9.0

June 2024

DiracX 
stack

demo
(on v9.0.0aX) v0.1.0

Stop 
support 

v7.3

(end 
2024?)

Stop 
support 

v8.0

DIRAC+X
certifications

Using DiracX services

...at some 
point

Stop 
support 

v9.0



DiracX Status

27

● We still have a lot to finish
○ “Groundwork”
○ Interoperability with legacy DIRAC
○ Deployment
○ Telemetry and monitoring
○ Documentation
○ Extensions

● DiracX will need to be installed alongside DIRAC v9.0
● DiracX won’t do much at this point

○ But all of the groundwork for a smooth transition will be ready
● Functionality will then be slowly moved to DiracX

○ Lot’s of interest from the community



Hackaton & Workshop
● Very exciting times ahead
● Good opportunity to join
● Next hackathon @ CERN: 9-10 April 2024
● DIRAC workshop in Lyon, France: 19-21 June 2024

28

https://indico.cern.ch/event/1376672/
https://indico.cern.ch/event/1341205/


Questions?

29


