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What is DIRAC

● A software framework for distributed computing
● A complete solution to one (or more) user community
● Builds a layer between users and resources 

● Developed by communities, for 
communities

○ Open source (GPL3+), GitHub hosted
○ Python 3
○ Publicly documented, yearly users workshops, open 

developers meetings and hackathons 
○ Deployed mostly via Puppet on VMs (really, not 

bound to any specific technologies)

● The DIRAC consortium as 
representing body

Slide that has been 
presented for years, 

with minimal 
variations

In summary: 
DIRAC is an open 
source project and 
the governing body 
includes institutes 

behind other 
experiments.

LHCb is the driving 
force behind the 
developments.

2

https://github.com/DIRACGrid
http://dirac.readthedocs.io/en/latest/index.html
https://indico.cern.ch/event/852597/
http://indico.cern.ch/category/4205/
https://indico.cern.ch/category/4205/


Installations and communities
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A framework shared by multiple experiments/projects, 
both inside HEP, astronomy, and life science

Experiment agnostic
Extensible

Flexible



Brief history
● 2000: Started in LHCb as an MC production system 
● 2002: “DIRAC2”, python, xml-rpc, Grid, DataChallenge 04 

(Pilot jobs) 
● 2006: “DIRAC3” 3 year long full refurbishment (DISET, 

Configuration SYstem, Accounting, etc)
● 2008: Multi-VO, split into “vanilla” and extensions, DFC
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Successful project
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● Project evolving from an experiment specific to a 
general-purpose one

● Pilot based architecture adopted by all the LHC 
experiments and multiple grid infrastructures

● Rare example of an efficient complex solution 
○ Both WMS and DMS at a scale

● Contributions from more that a hundred developers 
during 20 years of the project life
○ Plus specific extensions



Today’s DIRAC (py3) stack
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DIRAC WebAppDIRACDIRACOS2 Pilot

Conda-based 
package 

“manager”

Client and 
Server code

What holds the 
business logic

ExtJS6 + 
python layer

“The Pilot that 
flies in all the 

skies”

DB12diraccfg WebApp
Resourcestornado



DIRAC issues
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● Complex, with high entrance bar
● Somewhat cumbersome deployment
● Late on “standards”
● Oldish design
● Not very developer friendly
● multi-VO is an afterthought
● No clear interface to a running DIRAC service
● Custom WebApp



DiracX
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● DIRAC is old and is filled with technical debt
○ Attempts to make major change now systematically fail (OAuth2, HTTPS)

● DIRAC was very well thought out with a solid foundation
○ Wasn’t clear what a “Grid” even was when it started

● DiracX is a new approach, learning from the past 20 years
○ Learn from 20+ years of DIRAC
○ Tens of years of developer experience



DiracX: requirements list

9

● Make authentication transparent to users (no certificate errors)
● Simpler interfaces and clearer errors
● First class Multi VO support
● More flexibility (e.g. access via HTTPS without a DIRAC client)
● More stable releases
● Simpler installation and configuration
● Easier to maintain extensions (especially for the webapp)
● More accessible to new developers



Standard logging methods
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Change in Internal Auth/Autz model
● DIRAC:

○ X509 proxies
○ Identity based (DN + group)
○ Config lookup to 

assess permissions
● DiracX:

○ Tokens
○ Permissions embedded 

in the token
○ Oauth flows

● The change should be:
○ Transparent to users
○ More flexible for experts

● Security model

11

https://github.com/DIRACGrid/diracx/blob/main/security_model.md


Architecture: DIRAC
● DB classes connects to the databases
● Services expose the DB classes to Clients
● Agents are cron-like job executing periodic tasks
● Clients are called by Agents, scripts, API, etc
● WebApp calls Services directly or uses Clients

Reminder: pretty much everything is custom (protocol, 
serialization, plotting, etc)
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Architecture: DiracX
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Services -> FastAPI
High performance framework and widely used at scale

Designed for easy prototyping and development

Removes a lot of low level code and boilerplate

Standards based
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https://fastapi.tiangolo.com/

https://fastapi.tiangolo.com/


Swagger/ReDOC

Swagger/redoc generate interactive documentation from the JSON

Included in FastAPI by default
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Agents -> Celery
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● We need more than just API calls
● Long running “things” (seconds -> hours)
● Covers “Agents”, “Requests” and “Executors” in DIRAC

● Will be turned into asynchronous tasks
● Celery works well for this and is widely used



Clients
● Auto generated from the OpenAPI json generated by FastAPI
● Using Autorest

○ Developed by Microsoft for Azure and used by 
DigitalOcean

○ Supports many languages including Python
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WebApp Evolution
DIRAC

● Highly custom: not based on a framework (not easy to 
modify, lack of support)

● Based on vendor lock-in libraries: components rely on 
ExtJS, which requires a custom compiler to work

● Tightly coupled with DIRAC itself

DiracX

● Similar requirements as for DiracX itself
● Typescript, NextJS, React, Material UI
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The new WebApp
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Deployment
● DIRAC: custom scripts, manual work, based on runit (build our 

own RPM as no longer maintained)
● DiracX:

○ Kubernetes - Standard to define a distributed system
○ Separate infrastructure from applications

■ “Please IT department(/cloud provider) run this for me”
○ Helm gives the ability:

■ to parameterise
■ distribute a kubernetes config
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DiracX Helm chart
● https://github.com/DIRACGrid/diracx-charts

● How can you use it?
○ If your institution provides a kubernetes service: use it
○ If you work with public clouds: use their container services
○ If you’re a smaller install: use a lightweight option (k3s/k0s/rke2)

● This is used for:
○ DiracX testing (GitHub actions)
○ Local development instance
○ Running a demo instance
○ Running various DIRAC test instances
○ Soon: running production instances
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https://github.com/DIRACGrid/diracx-charts


Migration
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● Minimise operational work to migrate
● Avoid disruptive changes
● Don’t need hard things (downtimes, schema changes)
● Make the transition as simple as possible



Service migration
Current situation has:

● MySQL database
● DIPS service using a DB class
● DIRAC Client class
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Service migration
The MySQL DB stays the same.

Develop in parallel:

● FastAPI router
● Async SQLAlchemy DB class
● Modern API + CLI + tests
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Service migration
Once diracx service is ready, add 
a “legacy adaptor”
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DiracX Status
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v8.0

DIRAC 
stack

May 2022

Oct 2023

v9.0

June 2024

DiracX 
stack

demo
(on v9.0.0aX) v0.1.0

Stop 
support 

v7.3

(end 
2024?)

Stop 
support 

v8.0

DIRAC+X
certifications

Using DiracX services

...at some 
point

Stop 
support 

v9.0



DiracX Status
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● We still have a lot to finish
○ “Groundwork”
○ Interoperability with legacy DIRAC
○ Deployment
○ Telemetry and monitoring
○ Documentation
○ Extensions

● DiracX will need to be installed alongside DIRAC v9.0
● DiracX won’t do much at this point

○ But all of the groundwork for a smooth transition will be ready
● Functionality will then be slowly moved to DiracX

○ Lot’s of interest from the community



Hackaton & Workshop
● Very exciting times ahead
● Good opportunity to join
● Next hackathon @ CERN: 9-10 April 2024
● DIRAC workshop in Lyon, France: 19-21 June 2024
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https://indico.cern.ch/event/1376672/
https://indico.cern.ch/event/1341205/


Questions?
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