

High availability Kubernetes cluster using Octavia Ingress Controller (and not only...)

Francesco Sinisi (francesco.sinisi@cnaf.infn.it) Ahmad Alkhansa (ahmad.alkhansa@cnaf.infn.it) Alessandro Costantini (alessandro.costantini@cnaf.infn.it) Diego Michelotto (diego.michelotto@cnaf.infn.it) Barbara Martelli (barbara.martelli@cnaf.infn.it)

Outline

Context

- INFN
- DARE project and connection with INFN

Kubernetes HA deployment

- Virtual Machines in Cloud with Openstack
- Load Balancer with Octavia
- RKE2 and hardening
- Puppet automations

Auxiliary software

- Kyverno
- Harbor registry
- CSI CephFS
- Argo CD
- Operations

Conclusions

• Summary and future prospects

25/03/2024

ISGC 2024 - HA K8s cluster using Octavia Ingress Controller

 \mathbb{R}^{2}_{i}

Context

National Institute for Nuclear Physics (INFN)

Research areas:

- 5 lines of research
- With computing as a transversal needs
 Facilities:
- 4 national laboratories
- 20 divisions
- 6 associated groups
- 3 national centers and schools
- 1 international consortia
- Strong participation on national and international projects and collaborations

25/03/2024

4 National Laboratories 20 Divisions 11 Groups omputer Science Center Other Institutio 661 Galilan Galil Institute for Theoretic heoretical physic Ettere Malerana Foundatio and Centre for Scientil Portogalo di Capo Passero (SR

DARE project and connection with INFN

DARE (DigitAl lifelong pRevEntion) is a project part of the Italian National Recovery and Resilience Plan (NRRP). The initiative, taking advantage of new digital technologies, is aimed at creating and developing a community of knowledge, connected and distributed, which encourages the establishment of models and solutions for surveillance, prevention, health promotion and health safety.

The collaboration with INFN includes both the supply of **computational resources** (hardware) and **technical support** for their use and the **technologies** that can be deployed on them.

Considering the special nature of the data, i.e. **personal data** belonging to the medical field, we need a **secure infrastructure**, capable of dealing with any malicious attacks coming from the outside. Our platform was designed to meet these security needs.

Kubernetes HA deployment

VM in Cloud with Openstack

Cluster nodes are made up of VMs. The advantages of using cloud resources are:

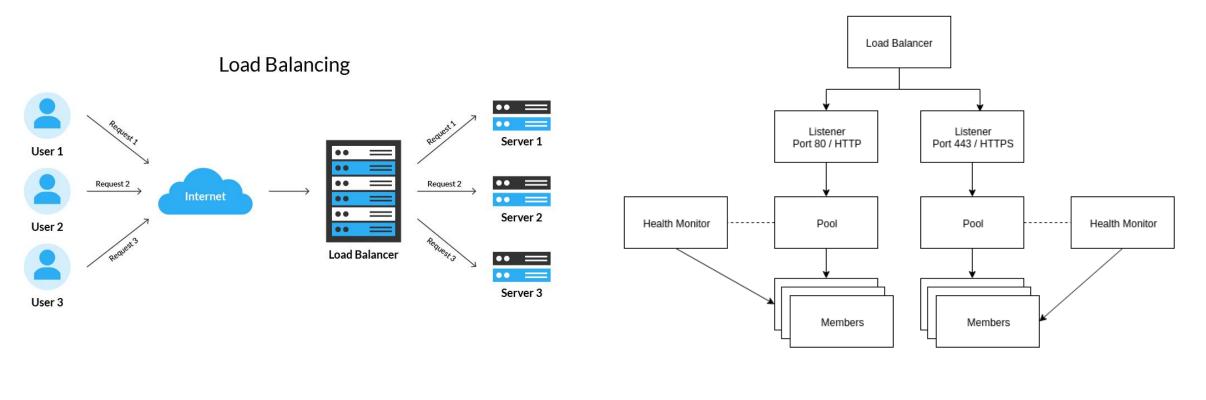
- easy and fast node creation (horizontal scalability)
- possibility of increasing the computational resources of a node belonging to the cluster (vertical scalability)

Tips for creating a good K8s cluster:

- Created masters and workers on different Hypervisors (anti-affinity)
- 3 masters on SSD (disk speed important to keep up with ETCD I/O)

25/03/2024

ISGC 2024 - HA K8s cluster using Octavia Ingress Controller



Octavia LB – feature (1)

- Automatic creation of 2 VMs (active + backup)
- Health monitor integrated and pool composed of multiple members

25/03/2024

ISGC 2024 - HA K8s cluster using Octavia Ingress Controller

Octavia LB – feature (2)

• Ability to easily configure connections (protocol, timeout, CIDR, etc.)

Provide the details for the listener.	
Name	Description
https	
Protocol *	Port *
ТСР	✓ 443
Client Data Timeout	TCP Inspect Timeout
50000	0
Member Connect Timeout	Member Data Timeout
5000	50000
Connection Limit *	Default Pool ID
-1	03812a0c-6e25-4f15-8f4c-1fe669a7a44e(https) v
Allowed Cidrs	
0.0.0.0/0	

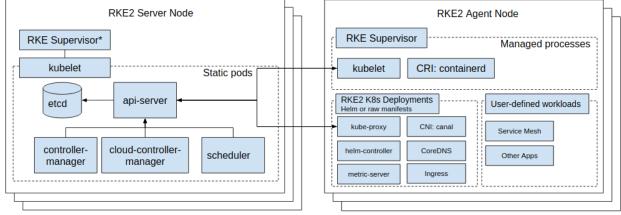
Lower consumption of FloatingIP

ISGC 2024 - HA K8s cluster using Octavia Ingress Controller

No

25/03/2024

Yes


RKE2 – overview (1)

RKE2 is a tool to automate the creation of a K8s cluster. It can boast a large **community** behind, quick software updates, periodic scanning for **CVEs**, good documentations.

It installs software like CRI, CNI, helm, ingress Nginx, metric-server, kube-proxy, etc.

Launches a daemon on servers and workers that supervises the main components of the cluster (kubelet, etcd, controller, scheduler, helm), created as static Pods.

25/03/2024

ISGC 2024 - HA K8s cluster using Octavia Ingress Controller

RKE2 – hardening (2)

One of the advantages of using RKE2 is the ability to easily create a hardened K8s cluster with a simple setup. It outlines the configurations and controls required to address Kubernetes benchmark controls from the **Center for Internet Security** (CIS).

RKE2 is designed to be "hardened by default" and pass most of Kubernetes CIS controls without modification. Other security checks are satisfied by using the CIS profile. There are, instead, a few notable exceptions to this, left to the discretion of the administrator, that require manual intervention to fully pass the CIS Benchmark.

The most important changes adopted, both automatic and manual, are:

- ensure protect-kernel-defaults is set (kubelet flag that will cause the kubelet to exit if the required kernel parameters are unset or are set to values that are different from the kubelet's defaults)
- ensure ETCD is configured properly (data directory be owned by the etcd user and group)
- limit traffic between namespaces (with some exceptions) with GlobalNetworkPolicy
- avoiding the creation of **default service accounts**

25/03/2024

ISGC 2024 - HA K8s cluster using Octavia Ingress Controller

Puppet automation

RKE2 offers a bash script to run on the machine. We have extracted only the code useful for our purposes and encapsulated it in a puppet module. This serves to maintain the cluster state and recreate the cluster **as quickly as possible** in the rare case of a complete downtime.

The module has the following characteristics:

- Management of the daemon (server, agent) and various software based on the role
- Repository management based on k8s version
- Version lock management
- Package management based on version and role
- Management of configuration files based on environment parameters

Auxiliary software

Kyverno

Security implies limitations, which must be consciously circumvented by the system administrator. All this involves manual work, which can be avoided thanks to special automation.

In this regard, we use <u>Kyverno</u>. It is a policy engine that perpetually listens to Kubernetes APIs via a webhook and, when a new namespace is created, automatically creates and sets the following:

- Resource quota at the namespace level
 - $\circ~$ Persistent (PVC) and ephemeral (Pod) storage
 - CPU and Memory requests
 - CPU and Memory limits
- Limit range at container level
 - Define the default CPU and Memory requests
 - $\circ~$ Limitation on the maximum value of CPU and Memory
- Network policy
 - $\circ~$ Allow traffic between workloads in the same namespace

25/03/2024

Harbor registry

Created a <u>Harbor</u> instance to **cache** downloaded images on cluster nodes. In this way, in the rare case of a downtime of the entire cluster, when re-creating the cluster, we avoid having to make several requests to the official image registries, which usually impose a cap on downloads per unit of time.

To overcome this inconvenience, projects have been created to deposit images for the most famous repositories (DockerHUB, Quay.io, GitHub Container Registry and K8S Registry).

How does Registry Harbor work? RKE2 is configured to pull Docker images from the repositories listed above via Harbor. If it doesn't exist, the image is downloaded from the official repositories and cached on Harbor, then **proxyed** to the cluster.

Harbor	Q Sea	earch Harbor							🌐 English 🗸 [≙fsinisi ~
옮 Projects		Projects				Project		Repositorie		Quota used	2
🗉 Logs						Private		Private (Guota useu	cin
& Administration										12.33	GiB
恐 Users											
💩 Robot Accounts											
怒 Groups										All Projects ~	
Registries		Project Name					Repositories Coun		Creatio		
G: Replications											
< Distributions											
S Labels											
Project Quotas					Proxy Cache						
O Interrogation Services					Proxy Cache					1.12:38 PM	
面 Clean Up										Page size 18 4	
Ø Job Service Dashboar										19 size 15 ~	
② Configuration											

25/03/2024

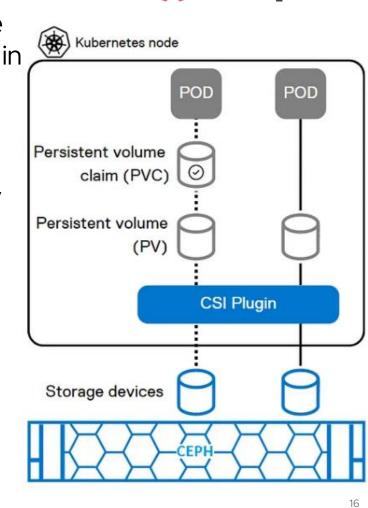
CSI CephFS

One of the requirements to obtain the CIS certificate is to avoid the use of **HostPath**, i.e. not to mount files contained in the host nodes in the Pod. For this reason, we have decoupled storage from the applications present on the cluster. As a storage solution we chose <u>CephFS</u>.

To allow communication between the 2 technologies it is necessary to configure:

- CephFS side
 - o creation of a **volume**, which corresponds to the ceph file system
 - creation of a **subvolumegroup** for each cluster with related authorization and quota
- Kubernetes side
 - installation of the CSI CephFS plugin
 - Configuring quotas for namespaces (Kyverno)
 - Dynamic provisioner that receives requests from Kubernetes server APIs to manage CephFS subvolumes

25/03/2024



Argo CD

argo

Argo CD is a declarative, GitOps continuous delivery tool for Kubernetes. It is a very convenient tool for developers, because it allows automatic synchronization between the code (desired target state) and the application (live state) with user-friendly graphics, and safe for cluster administrators, because it prevents users from having direct access to the Kubernetes API. Obviously, users will be limited by the constraints seen previously (Kyverno).

In Argo CD it is possible to define:

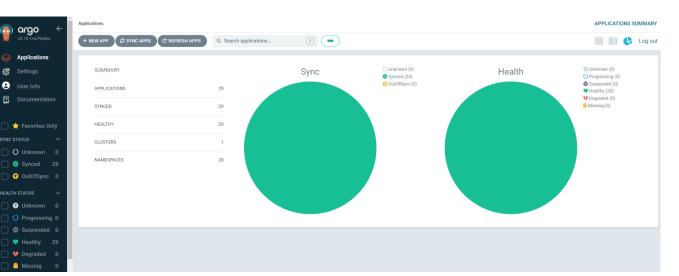
- Define hosted namespaces
- Black/Whitelist cluster-wide/namespaced resources
- Policy for authorized users

It also allows integration with:

- SSO (INDIGO-IAM)
- Prometheus
 - Prometheus can access metrics exported from Argo
 - Prometheus injects container metrics into the Argo dashboard

ISGC 2024 - HA K8s cluster using Octavia Ingress Controller

25/03/2024



Operations

Limited external access points. Only 2 FloatingIPs were used for the entire cluster: one for the LB and the other for a bastion VM. Access via SSH to this VM is permitted only to system administrators for maintenance and management reasons: on this VM there are software such as kubectl, <u>k9s</u> (k8s textual UI) and <u>HeIm</u> (used to deploy most of the software seen so far).

The ETCD backup is saved on the bastion node: it periodically collects the data from all 3 server nodes, keeping the last 5. To save data longer, these backups are taken from the node and, thanks to the <u>BackupPC</u> software, they are saved on tape via TSM (IBM).

Monitoring occurs on 2 levels:

- As regards the infrastructure side, the **cluster nodes** are under control via Sensu-go, InfluxDB and Grafana, with alarms on Slack, Teams and e-mail.
- At the **cluster** and **application** level we use monitoring via <u>Prometheus</u> and <u>Grafana</u> (helm chart kube-prometheus-stack), present on the cluster itself.

Conclusions

DARE DISITAL LIFELONG PREVENTION

Summary and future prospects

To summarize, we have given some tips for creating a K8s cluster in **high availability** (master redundancy, LB, decoupled storage), **quickly** (through the use of automation) and **secure** (Center for Internet Security).

Future steps:

- Finish log collection and indexing via Big Data Platform (Filebeats, Kafka, Logstash, OpenSearch)
- Integration with OIDC/Oauth for Kubernetes API access
- Investigate the use and the adoption of backup solutions (Ceph side)

Purposes:

Adopt this approach as a platform for other projects and contexts

Thank You!

This research was co-funded by the Italian Complementary National Plan PNC-I.1 "Research initiatives for innovative technologies and pathways in the health and welfare sector" D.D. 931 of 06/06/2022, "DARE - DigitAl lifelong pRevEntion" initiative, code PNC000002, CUP: B53C22006450001

