Wireless Broadcasting for Efficiency
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o%,?o IOT ANALYTICS Insights that empower you to understand loT markets

Total number of active device connections worldwide
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Note: Non-loT includes all mobile phones, tablets, PCs, laptops, and fixed line phones. loT includes all consumer and B2B devices connected — see loT break-down for further details
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Federated Learning (by Google in 2016)
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Federated Learning: Challenges
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Current Research Topics

Communication Cost:
=>  Hierarchical Server Architecture [12]
- Optimizing number of local rounds [13]
- Merging of independently trained models [14]
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Current Research Topics

Communication Cost:
=>  Hierarchical Server Architecture [12]
- Optimizing number of local rounds [13] @
- Merging of independently trained models [14]

Handling non-IID Data:
- K-means clustering of data to train K models [22]

Parameters
- Sharing part of the data [21]

- Identifying a global trend to get rid of outliers [10] D %
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Current Research Topics

Communication Cost:
=>  Hierarchical Server Architecture [12]
- Optimizing number of local rounds [13]
- Merging of independently trained models [14]

Handling non-IID Data:
- K-means clustering of data to train K models [22]

- Sharing part of the data [21]

- Identifying a global trend to get rid of outliers [10] % D
User 1 User 2 User 3 User 4 User 5
Dependency on Central Server: Fe e BOo B RO
-  Aggregate functions in P2P networks [17] é é é é é
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- Asynchronous communication in P2P networks with enh. privacy [18]
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Current Research Topics

Communication Cost:
=>  Hierarchical Server Architecture [12]
- Optimizing number of local rounds [13]

-  Merging of independently trained models [14] What about
Handling non-IID Data:

, | leveraging 5G+
- K-means clustering of data to train K models [22]
> Sharing part of the data [21] networks?

- Identifying a global trend to get rid of outliers [10]

Dependency on Central Server: .

-  Aggregate functions in I?2P'netyvorks [17] ' . = > é
- Asynchronous communication in P2P networks with enh. privacy [18]
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Hybrid Protocol: Tier-n Server
Wireless D2D & ,

Hierarch. Server \
Tier-1 Server ¢

synchronize

Decrease server load &
communication cost

Prevent parameter
diverging

Wireless broadcasting
of training updates
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Hybrid Protocol:

Devices broadcast their
weight deltas and merge
received deltas

Clients have a random
timer that triggers sync
with server for one client
per group

Tier-n Server
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Wireless broadcasting
of training updates
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Hybrid Protocol: Tier-n Server
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Hybrid Protocol:
Future Work

Tier-n Server
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synchronize

e Training convergence analysis

e Sync frequency optimization

e D2D transmit power control
Wireless broadcasting
of training updates
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5G+ characteristics are an opportunity
for dynamic loosely coupled low-cost
D2D architectures

Useful to reduce parameter divergence
and server involvement in FL

Future Work:
App-independent implementation
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