

1

Signal model parameter scan using Normalizing Flow

29th March 2024

ISGC 2024

ICEPP/UTokyo^a, KEK^b

<u>Masahiko Saito</u>^a, Masahiro Morinaga^a, Tomoe Kishimoto^b, Junichi Tanaka^a

Why signal model parameter scan?

- No clues for beyond the Standard Model (BSM) in LHC experiments so far.
 Comprehensive searches are needed, rather than focusing on the limited phase space.
 - e.g. "anomaly detection". But not assuming for a specific signal model results in a worse discovery sensitivity.
 - Searches that assume a specific signal model and cover the entire phase space
 → model parameter scan
- Some BSM (signal) models have <u>a lot of unpredictable model parameters</u>.
 - e.g. MSSM: > 100 parameters, pMSSM (reduced model): 19 parameters.
- Scanning such a large phase space is a challenging task.
 - Huge number of model parameter combinations
 - High computational cost to prepare a dataset of each BSM model parameter
 - Data processing (e.g. detector simulation) is a time-consuming task

Some methods for model parameter scan

Desired method: flexible interpolation, fast search, tolerant to high-dimensional space 3

Signal model parameter scan using Normalizing Flow

- We propose a new method using conditional Normalizing Flow (NF)
- Normalizing Flow is a kind of generative model
 - Model a probability density function (p(x)) from data $({x_i})$
 - Also model a conditional distribution $(p(x|\theta))$
- We can use Normalizing Flow as
 - Generator: generate new events with unseen parameters fast $(x' \sim f_{NF}(x|\theta))$
 - **Evaluator**: evaluate a likelihood value for multidimensional observed data $(-\log f_{\rm NF}(x_{\rm obs}|\theta))$
 - and can evaluate gradients for parameters $\nabla_{\theta} f_{NF}(x_{obs}|\theta)$ fast

Optimizer: fast, efficient, and continuous scan for model parameters using a gradient-based optimization (e.g., gradient descent), even when the model parameter space is high dimensional.

Workflow of parameter scan

- This is the same as random sampling
- Simulation samples can be generated in parallel.

Workflow of parameter scan

- This is the same as random sampling
- Simulation samples can be generated in parallel.

- Train a conditional Normalizing Flow (NF) $f_{\rm NF}(x|\theta)$ to model the pdf for all samples
- The NF can interpolate in θ phase space

Workflow of parameter scan

- The NF can evaluate the NLL value fast based on the modeled pdf ($f_{\rm NF}(x|\theta)$)
- Directly calculate gradients for model parameters $\nabla_{\theta_{sig}} p(x_{data} | \theta_{sig})$ using backpropagation

- Train a conditional Normalizing Flow (NF) $f_{\rm NF}(x|\theta)$ to model the pdf for all samples
- The NF can interpolate in θ phase space

Toy data (bump hunting)

Hunting a Breit-Wigner signal on the exponential background tail

- Use analytic functions $(f_{sig/bg}(M | \theta_{sig/bg}))$ for signal/background pdf
 - $\theta_{sig} = \{M_{pole}, \Gamma\}, \theta_{bg} = \{\tau\}$
- Training samples: 200k events with randomly sampled from model parameter space $\theta_{sig} \in \Theta_{sig}, \theta_{bg} \in \Theta_{bg}$
- Pseudo dataset for parameter scan
 - fixed $(\theta'_{sig}, \theta'_{bg})$ (unknown.)
 - Signal 1k events, background 100k events

Toy data: Training a Normalizing Flow Model

- Spline Flows (<u>1906.04032</u>) is used as a Normalizing Flow (NF) model
 - Use rational-quadratic splines in each transformation step
 - Flexible modeling capabilities.

Signal distribution

• Train two NF models for signal and background, respectively

Count training samples training samples Count Sampling from NF Sampling from NF $f_{\rm NF}^{\rm bg}(M_{\rm reco}|\theta_{\rm bg})$ $f_{\rm NF}^{\rm sig}(M_{\rm reco}|\theta_{\rm sig})$ $M_{
m reco}$ $M_{
m reco}$

Background distribution

Toy data: Parameter scan

• Define likelihood

10

• Evaluate the sum of NLL ($-\sum_i \log p(x_i^{obs}|\theta)$) for the pseudo dataset ($\{x_i^{obs}\}$) for any model parameter (θ).

Toy data: Parameter scan

- NLL (log $p(x_i|\theta)$) is differentiable for model parameters (θ)
 - Fast gradient evaluation $(-\nabla_{\theta} \log p(x_i|\theta))$
 - Can use gradients for efficient parameter scan

More practical data: LHC Olympic 2020 (LHCO) Dataset

- LHC Olympic 2020 (2101.08320) benchmark dataset
 - Signal: $Z' \rightarrow XY \rightarrow qqqq$ (2 large-R jets), Background: QCD di-jet
 - (R&D) dataset parameter: $((m_{Z'}, m_X, m_Y) = (3500, 500, 100)$ GeV)
 - Enhanced signal samples with various signal parameters for this study
- Input features according to the ANODE paper (2001.04990)

 $\frac{5 \text{ input (high-level) features (observable, x)}}{m_{J_1} (\approx m_X) \text{ (jet mass)}}$ $\tau_{J_1,21} \text{ (jet substructure variables)}$ $m_{J_1J_2} \text{ (di-jet mass)}$

$$m_{J_1}-m_{J_2}(pprox m_X-m_Y)$$
 (jet mass)

 $au_{J_2,21}$ (jet substructure variables)

LHCO: Training samples and NF models

- Training samples (enhanced for this study)
 - $m_{Z'}$: [3000, 3500, 4000, 4500] GeV
 - *m_X*: [250, 500, 750, 1000] GeV
 - *m_Y*: [50, 100, 150, 200, 250, 300] GeV

(where satisfied with " $m_{Z'} - m_X > 1000 \text{ GeV}$ " and " $m_X - m_Y > 100 \text{ GeV}$ ")

- Total number of signals: 583k, background: 91k
- Preprocessing:
 - Input features are **linearly** normalized in the range 0 ~ 1.
- Normalizing Flow model configuration
 - Masked Autoregressive Flow (MAF) is used.
 - Two normalizing flow models for signal/background
 - NF for signal: 3 conditional parameters $(m_{Z'}, m_X, m_Y)$
 - NF for background: no conditional parameters

LHCO Dataset: Training the signal NF model

Di large-R jets mass (~Z' mass)

- Now 5 observables (x) and 3 signal model parameters (θ)
- Normalizing Flow model works well for higher dimensional observables/parameters, even if the pdf has an irregular structure.

LHCO Dataset: Interpolation capability

- Samples generated by NF models trained with Z['] mass = [3000, 3500, 4000, 4500] GeV
- Good interpolation and extrapolation capabilities.

LHCO Dataset: Parameter scan

 NLL and gradient evaluation work well for higher dimensional observables/parameters and complex pdfs.

Summary and future work

- Proposed an efficient signal model parameter scan technique based on Normalizing Flow
- Demonstrated this technique on toy data and LHC Olympic 2020 benchmark dataset
 - The Normalizing Flow model has good capabilities for modeling complex distributions and interpolating signal model parameter spaces.
 - Gradient of NLL can be evaluated fast.
- Future work
 - Extend to higher dimensional data
 - higher dimensional observables (e.g. set of particle four-vectors)
 - higher dimensional model parameters (e.g. pMSSM, 19 parameters)

Backup

LHCO Dataset: Pseudo dataset and NLL

• Find the optimal signal parameter (θ_{best}) that best describes the pseudo dataset ({ x_i }) based on NLL ($-\sum_i \log p(x_i | \theta)$) 19