
INDIGO IAM migration to Spring 
Authorization Server framework with a 

new customizable React user dashboard
Jacopo Gasparetto

INFN - CNAF

International Symposium on Grids & Clouds (ISGC)
24-29 March 2024



First developed in the context of the H2020 INDIGO 
DataCloud project
     ~8 years since 1st INDIGO IAM release v0.3.0

Selected by the WLCG management board to be the 
core of the future, token-based WLCG AAI

INFN commitment for the foreseeable future, with the 
current support of several Italian and European projects:

INDIGO Identity and Access Management Service

2

IAM
VOMS

AA

Online
CA

Certificate
generation

AuthN & 
Consent

Brokered
AuthN

OAuth/OIDC 
aware service

X.509/VOMS 
aware service



INDIGO Identity and Access Management Service

● Supports multiple authentication mechanisms
○ SAML, X.509, OpenID Connect, local users, etc.

● Supports account linking
○ also SSH RSA keys and a certificate generated through an Online 

CA can be linked
● Provides a registration service for moderated and 

automatic user enrollment
○ it can be disabled

● Enforcement of AUP acceptance
● Exposes identity information, attributes and capabilities to 

services via JWT tokens
● Easy integration with ready-to-use components thanks to 

OpenID Connect/OAuth
● Can integrate existing VOMS-aware services
● Supports Web and non-Web access, delegation and token 

renewal
3

IAM
VOMS

AA

Online
CA

Certificate
generation

AuthN & 
Consent

Brokered
AuthN

OAuth/OIDC 
aware service

X.509/VOMS 
aware service



IAM core technologies

IAM is a Spring Boot application
● OIDC/OAuth 2.0 implementation currently based on the MitreID Connect
● deployed behind an NGINX
● stores data in a MariaDB/MySQL database

Horizontally scalable
● sessions and external caching stored into Redis 

We deploy IAM as a containerized service on top of Kubernetes
● autoscaling, zero downtime rolling updates

4

https://github.com/mitreid-connect/OpenID-Connect-Java-Spring-Server


IAM deployments at CNAF

5

~ 20 IAM 
instances



IAM deployments outside CNAF

6

~ 10 IAM instances

atlas-auth.web.cern.ch cms-auth.web.cern.ch lhcb-auth.web.cern.ch alice-auth.web.cern.ch        iris-iam.stfc.ac.uk



Spring boot migration to 2.6.6.
Flyway upgrade to 7.15.0.
New clients management page.
New clients registration page.
Support for JWT-based 
client-authN.
New Cache-Control to /jwk 
endpoint.
New consent page.

Releases roadmap

Latest release IAM v1.8.4 - released on 2024-03-25 Changelog

IAM 
v1.8.0

IAM 
v1.8.1

Sep. 
2022

Feb. 
2023

IAM 
v1.8.2

May. 
2023

IAM 
v1.8.3

Dec. 
2023

IAM 
v1.8.4

Mar. 
2024

IAM 
v1.9.0

End of 
summer 2024

Add scope 
management.
Add groups view for 
group managers.

New admin scopes for 
internal API endpoints.
Spring boot migration 
to 2.6.14.
Fix lifecycle end-time 
for suspended 
account.

Add access token hash value.
Add missing foreign keys.
Add OpenID Connect standard 
claims for WLCG JWT profile.
Allow to add certificates with 
the same subject DN.
Fix authz code flow with PKCE.

Add refresh token value index.
Allow Chinese characters 
within user info.
Only registered users can get 
client credentials grant type.
Remove possibility to add a 
client logo URI.
Disable client editing through 
MitreID endpoint.

Token generation on AUDIT 
log.
Add Client’s last used info.
Admins can disable clients.
Open Policy Agent external 
engine integration for scope 
policy API definition.
First 2FA implementation.
…

IAM 
v2

2025
Jan. 
2024

New IAM based on Spring Security.
New ReactJs web dashboard for 
admins and users.

https://github.com/indigo-iam/iam/releases/tag/v1.8.4
https://github.com/indigo-iam/iam/blob/v1.8.3/CHANGELOG.md


Current main development targets
● Auditing improvements
● Superseded obsolete dependencies 

○ MitreID → Spring Authorization Server
○ AngularJS →  React JS

● Improve usability for users & admins
● Scalability and Performances improvements

○ Access tokens not stored on database
○ Dedicated garbage collector service
○ Fine grained AuthZ with Open Policy Agent

● Interoperability focus
○ Support OIDC Federations
○ Improve conformance with AARC BluePrint Architecture and its

guidelines
● Security

○ Add Multi-Factor Authentication (MFA)



Migration to
Spring Authorization Server



Spring Authorization Server

Spring Authorization Server is a framework, built on top of Spring Security, that 
provides a secure, lightweight and customizable foundation for building an OAuth 
2.1 and OpenID Connect 1.0 Authorization Server implementation.

Why?

● We still rely on a forked and self-maintained version of MitreID Connect library 
which has no substantial support/evolution since few years

● It’s a natural evolution of the current architecture Java/Spring-based
● Long-term support and easier maintainability
● Better OIDC/OAuth standards compliance

○ Compliance with OAuth 2.1 standard

10

https://spring.io/projects/spring-authorization-server


OIDC/OAuth standards compliance

Tested with OAuch.io

Where we are…

Based on MitreID Connect library and OAuth 2.0 standard. 
OAuth 2.1 tests excluded because not supported.

First tests done with a rough application built 
on top of Spring Authorization Server

● already supports many OAuth standard
grants

● many OIDC/OAuth endpoints are supported by default
● tests in progress

http://oauch.io


New Dashboard
A React based web application



New Dashboard: a React based web-application

Motivation

● Remove AngularJS (EOF) and JavaServer Pages 
(JSPs)

● Full support of modern HTML5 / TypeScript / CSS 
development stack based

● Decouple the frontend code from the INDIGO IAM 
codebase

● Handle AuthN/AuthZ via OpenID Connect and 
OAuth2 frameworks

● Modern and lightweight rendering framework 
(React)

● Customizable by different organizations
● Reuse of standard and custom web components
● Styles harmonization for all future INFN web 

applications



Implementation details (Proof of Concept)

● Full browser-based application
● Public IAM client
● AuthN/AuthZ responsabilites managed by the 

web application
● OAuth2 Authorization Code flow (RFC6749) 

w/PKCE* extension (RFC7636)
● Requests to the INDIGO IAM endpoints 

authenticated via the obtained JWT access 
token

● Absence of any cookie-based session
● INDIGO IAM plays both the roles of 

Authorization Server and Resource Server

Dashboard Authorize Endpoint Token Endpoint API

(1) GET Request for Auth Code

(2) POST Request for Access Token

Auth Code

Access Token (and Refresh Token)

(3) HTTP Request for a Resource w/Access Token as authorization header

Resource Content (e.g, user’s profile)

Authorization Server Resource Server

INDIGO IAM

OAuth2 Authorization Code flow (PKCE is not shown in figure)

* Proof for Key Code Exchange

https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc7636


Where we are: Proof of Concept

Homepage example

● Simple and lightweight
● Fully executed within the browser as Single 

Page App (SPA)
● Straightforward deployment as a Docker 

image derived from NGINX
● Highly scalable
● Currently a demo version is deployed on our 

development Kubernetes cluster using Argo 
CD

● GitHub Source

https://github.com/indigo-iam/iam-dashboard


Current dashboard



Security Concerns

● The web application is a public OAuth2 client and thus cannot have secure secrets

● Access Token and Refresh Tokens available to the JavaScript code, but this is not considered 

a recommended practice

○ An attacker can more easily gain direct control over the access token and send 

legitimate requests to the Resource Server on behalf of the legitimate owner (i.e., gather 

users’ information, edit users and groups etc)

○ Similarly, an attacker could exploit a silent Refresh Flow to obtain a 

new fresh set of tokens

● Risk of scope escalation if not handled properly with policies



Future outlooks



Possible scenarios

● Static website with Backend
○ Backend For Frontend (BFF): the backend handles all OAuth2 responsibilities and proxies 

requests to the Resource Server without exposing any token to the browser
○ Mediating-Token Backend: the backend handles all OAuth2 responsibilities and return an 

access token to the browser, which will perform authorized requests to the Resource Server 

● Server-side rendering
○ All OAuth2 responsibilities are handled by the backend
○ Rendering and computations completely run on the backend server exposing only the final 

HTML content
○ Requires the usage of a complex framework, such as Next.js
○ This is the current architecture

Source: https://datatracker.ietf.org/doc/draft-ietf-oauth-browser-based-apps/ 

https://datatracker.ietf.org/doc/draft-ietf-oauth-browser-based-apps/


Conclusions

INDIGO IAM is a critical service widely adopted by many scientific communities. 
Our evolution roadmap includes:

● Migration to Spring Authorization Server
○ Go beyond the unsupported MitreID Connect library
○ Better compliance with OIDC / OAuth 2.1 standards
○ Rely on a more maintained and supported framework

● Development of a new dashboard
○ Go beyond old AngularJS based web user interface
○ Decouple frontend codebase from INDIGO IAM
○ Explore modern solutions to handle securely both the critical operations, such as the OAuth 

flows, and the critical endpoints (API)
○ A successful attempt of a Single-Page App (SPA) built in React, proved to be a good 

candidate to replace the current INDIGO IAM dashboard

Source: https://datatracker.ietf.org/doc/draft-ietf-oauth-browser-based-apps/ 

https://datatracker.ietf.org/doc/draft-ietf-oauth-browser-based-apps/


Many thanks to all the 
contributors

Federica Agostini, Roberta Miccoli, Enrico Vianello, 
Stefano Zotti, Francesco Giacomini



Bkp



Core technologies in AAI

● OAuth 2

○ A standard framework for delegated authorization
○ Widely adopted in industry
○ Main specification is RFC 6749

● OpenID Connect (OIDC)

○ An authentication layer built on top of OAuth 2
○ Core specification

● JSON Web Tokens (JWTs)

○ A compact, URL-safe means of representing attributes 
(claims) to be transferred between two or more parties

○ Main specification is RFC 7519

23

https://www.rfc-editor.org/rfc/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/rfc/rfc7519


OAuth 2 roles

● Resource owner
○ A user that owns resources hosted at a service

● Client
○ An application that wants to have delegated access to user resources
○ It has to be registered on the Authorization Server
○ Relying Party (RP) in OIDC

● Authorization Server (AS)
○ A service that authenticates users and Clients
○ It issues tokens to Clients that can be used to access user resources
○ OpenID Provider (OP) in OIDC

● Resource Server (RS)
○ A service that holds protected resources (e.g., user data) 
○ It grants access based on tokens issued by the Authorization Server and presented by a Client
○ It has to validate the access token
○ Not mandatory to register a RS on the Authorization Server

24

The Authorization Server 
may be the same as the 

Resource Server



Authorization flow in theory

1. Authorization request to the resource owner
○ The Client (A) requests authorization from the resource owner 

to access a resource within a defined scope

■ the authorization request can be performed indirectly 
via the Authorization Server (AS)

○ The Client receives an authorization grant, which is a 
credential representing the resource owner's authorization

■ it depends on the authorization flow (aka grant type) 
used by the Client to perform the authorization requests

2. Authorization request to the AS token endpoint
○ The Client requests for an access token by authenticating 

with the AS and presenting the authorization grant

■ additional tokens can be requested at this stage
25



Authorization flow in theory

3.    Access to the protected resource

○ The Client requests the protected resource from the 
Resource Server (B) and authenticates by presenting the 
access token

○ The RS validates the access token, and if valid, serves 
the request

○ Access is granted/denied according to the contents of the 
access token

■ local policies that map token claims into 
permissions may be applied by the RS

26



OAuth/OIDC token types

Access Token (AT)

● Defined within OAuth 2
● Is a string that the Client uses to make requests to the Resource Server

○ do not have to be in any particular format
● AT may be bearer tokens, meaning that those who hold the token can use it

ID token

● Defined within OIDC
● Is a JWT intended to be read by the OAuth Client, which is the audience of the token
● May also contain information about the user such as their name or email address

○ client applications can use it to build a user profile to personalize the user 
experience

Refresh token (RT)

● Defined within OAuth 2
● Is a string that the OAuth Client can use to get a new AT without the user's interaction
● Must not allow the Client to gain any access beyond the scope of the original grant

27

https://www.rfc-editor.org/rfc/rfc6749#section-1.4
https://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://www.rfc-editor.org/rfc/rfc6749#section-1.5


OAuth/OIDC grant types

Authorization grant types

=

Authorization Flows

=

Ways for an application to get tokens

28



IAM supported OAuth grant types

Authorization grant types, or authorization flows, are ways for an application to get 
tokens

● authorization code → mainly used by server-side web applications which can maintain the 
confidentiality of client credentials

● device code → used by clients that can not easily trigger a browser-based authorization and could 
run on a separate device

● refresh token → it allows an application to act on behalf of a user and get tokens without user’s 
interaction

● client credentials → used to obtain tokens not linked to user identities, since the client can make 
token requests by itself

● token exchange → satisfies the needs to access resources hosted by other downstream services 
on behalf of the user

● implicit (deprecated in OAuth 2.1) → it simplifies the authorization code flow, mainly used by 
client-side web applications

● password (deprecated in OAuth 2.1) → linked to user’s credentials, does not support delegation
29



Identity-based vs Scope-based Authorization

Identity-based authorization

● the token brings information about attribute 
entitlement (e.g., group/role membership)

● the service maps these attributes to a local 
authorization policy

Scope-based authorization

● the token brings information about which 
actions should be authorized at a service

● the service needs to understand these 
capabilities and honor them

● the authorization policy is managed at the VO 
level (i.e., IAM)

30



Identity-based vs Scope-based Authorization

The two models can coexist, even in 
the context of the same application!

Scope-based authZ

Identity-based authZ


