
Lockers: An Innovative and
Secure Solution for Managing
Secrets

Viet Tran viet.tran@savba.sk
Institute of Informatics, Slovak Academy of Sciences
Slovakia

mailto:viet.tran@savba.sk

Security vs usability

Security improvements are often done at the cost of usability

● Long passwords with upper/lowercase letters, numeric and special characters
● 2FA
● Captcha
● …

But in secret management service, we improve both security and usability without
conflicts

2

First thought of secret management service

● Just deploy HashiCorp Vault and have it
○ It works
○ But we can improve it a lot
○ We can improve both security and usability

3

Quick overviews of existing features

4

High-availability setup

Three nodes, geographically distributed at IISAS (Slovakia), INFN (Italy) and IFCA
(Spain)

5

Universal endpoint via Dynamic DNS

● Three endpoints, each can serve user requests:
○ https://vault-iisas.services.fedcloud.eu:8200 (IISAS)
○ https://vault-infn.services.fedcloud.eu:8200 (INFN)
○ https://vault-ifca.services.fedcloud.eu:8200 (IFCA)

● How users know which service endpoint is healthy?

6

https://vault-iisas.services.fedcloud.eu:8200
https://vault-infn.services.fedcloud.eu:8200
https://vault-ifca.services.fedcloud.eu:8200

Universal endpoint via Dynamic DNS

● Three endpoints, each can serve user requests:
○ https://vault-iisas.services.fedcloud.eu:8200 (IISAS)
○ https://vault-infn.services.fedcloud.eu:8200 (INFN)
○ https://vault-ifca.services.fedcloud.eu:8200 (IFCA)

● Main, universal endpoint https://vault.services.fedcloud.eu:8200 is assigned to
IFCA or INFN endpoint via Dynamic DNS

● NEW: new universal endpoint https://secrets.egi.eu/

7

https://vault-iisas.services.fedcloud.eu:8200
https://vault-infn.services.fedcloud.eu:8200
https://vault-ifca.services.fedcloud.eu:8200
https://vault.services.fedcloud.eu:8200
https://secrets.egi.eu/

Easy-to-use client

● Issue: Vault client is cumbersome (needs two steps for each operation + 3 additional settings)

$ export VAULT_ADDR=https://vault.services.fedcloud.eu:8200
$ export ACCESS_TOKEN="ADD_YOUR_ACCESS_TOKEN_HERE"
$ export VAULT_HOME=/secrets/YOUR_CHECKIN_ID@egi.eu/

$ vault write auth/jwt/login jwt=$ACCESS_TOKEN
Key Value
--- -----
token s.XXXXXXXXXXXXXXXXXXXXXXX

$ export VAULT_TOKEN="s.XXXXXXXXXXXXXX"

$ vault list $VAULT_HOME

8

https://vault.services.fedcloud.eu:8200
mailto:YOUR_CHECKIN_ID@egi.eu

Easy-to-use client

● Authentication via access tokens (integrated with oidc-agent and mytoken)
● Working out of the box, no setup
● Simple, easy-to-use commands

$ fedcloud secret put my_app_secrets mysql_password=123456 admin_password=abcdef

$ fedcloud secret list
my_app_secrets

$ fedcloud secret get my_app_secrets
key value
-------------- -------
admin_password abcdef
mysql_password 123456

9

Client-side encryption

● Users may need to store very sensitive secrets that absolutely nobody else
can read them, by any means
○ Access tokens may be compromised
○ 2FA authentications are not suitable for automation
○ Solution: users encrypt the secrets before uploading
○ Very easy to use, fully automatic and transparent

$ fedcloud secret put certificate cert=@hostcert.pem key=@hostkey.pem --encrypt-key
my-secret-passphrase

$ fedcloud secret get certificate cert --decrypt-key my-secret-passphrase

● Security tips: use different passphrases for different secrets

10

NEW: Introduction of lockers

11

Motivations

12

● Authentication via access tokens from VMs is not optimal
○ Access tokens have too broad rights (to all secrets, to other services)
○ Should not be used on shared VMs or untrusted Cloud environments

● Lockers, the temporary, isolated storages for valuable items, are
the solution
○ Create a locker, store valuable items there and deliver the key to recipients
○ No personal credential needed for retrieving valuable items
○ No access to other valuable items except the ones stored in lockers
○ Ideal for delivering secrets in untrusted environment like Cloud

Features of secret lockers

● Temporary, short-living:
○ Lifetimes: default 24h (client setting), max 32 days (system setting)
○ Numbers of uses: default 10 (client setting), max unlimited (system setting)

● Isolated, secure:
○ Lockers are completely isolated from each others, and from the main secret storages
○ The only way to access secrets in the lockers are locker tokens. Even creator or root do not

have access by other means

● Non-personal:
○ Locker tokens cannot access other secrets outsides of the lockers
○ No personal data stored in the locker token

● Transferable:
○ As lockers are isolated and non-personal, creators can share/transfer the lockers and its

content to others if needed

13

Creating a locker

$ fedcloud secret locker create
hvs.CAESIGXXX <= Print only the token, easy scripting

$ fedcloud secret locker create --ttl 24h --num-uses 10 –-verbose
key value
--------------- ---
client_token hvs.CAESIGXXX <= This is the token
accessor o3GXXXXXXXXXXXXX
policies ['default']
token_policies ['default']
lease_duration 86400
renewable False
orphan False
num_uses 10

14

Checking info of the locker

$ fedcloud secret locker check hvs.CAESIXXX
key value
---------------- ---
accessor qb52XXXXXX
creation_time 1685008416
creation_ttl 86400
display_name token-token
expire_time 2023-05-26T09:53:37.315243089Z
id hvs.CAESIGXXX
issue_time 2023-05-25T09:53:37.315281071Z
num_uses 8
orphan False
path auth/token/create
policies ['default']
renewable False
ttl 86114
type service

15

Accessing lockers

● Just set locker token instead of OIDC access token and use `fedcloud secret`
commands `put/list/get` normally. No additional configuration needed:

$ fedcloud secret put mysecret password=123456 --locker-token hvs.CAESIXXX

● The locker token may be set as OS environment variable like access token

$ export FEDCLOUD_LOCKER_TOKEN=hvs.CAESIXXX
$ fedcloud secret get mysecret
key value
-------- -------
password 123456

● Note: OIDC accounts and access tokens are not needed for accessing lockers.

16

Accessing lockers via GUI

Users can login to Vault’s
GUI via locker token and
manage secrets via GUI

Warning: the GUI exhausts
number of uses very fast.
Remember to set larger
number of uses if
experimenting with GUI

17

Destroying lockers

Lockers and all contents in them are automatically destroyed when their lifetimes or
numbers of uses are expired (desired feature for security)

They can be also destroyed manually if needed by revoking the locker token:

$ fedcloud secret locker revoke hvs.CAESIXXX

18

Special: single-use lockers

19

Why single-use lockers

● Sometimes, users need to deliver secrets via untrusted communications
○ It is a big trouble if some secrets are stolen (passwords, tokens, …)
○ It is still a much bigger trouble if secret owners don’t know about that
○ Attacker may quietly abuse the secrets for long time and make much larger damages

=> Single-use lockers are the way to go

● Autodestruction after successful delivery
● Immediate detection of misbehavior if it happens

20

How to use single-use lockers

● Create a locker with num-uses=2 (not 1)
$ fedcloud secret locker create --ttl 1h --num-uses 2

hvs.CAESIXXX

● Store some secrets there. That will reduce number of uses to 1 (single-use)
$ fedcloud secret put mysecret password=123456 --locker-token hvs.CAESIXXX

● Send the locker token to recipient via possibly untrusted communications:
○ If the recipient can read the secrets, it is safely delivered, nobody else has read them before

(and nobody can read them later)
○ If the recipient cannot read the secrets, it is a proof that secrets have been stolen. Time to alarm

admins, change passwords, revoke tokens, launch investigations and do other relevant actions

21

Summary about lockers

● Lockers simplify delivering secrets to untrusted VMs
○ No need of access tokens, no personal data
○ Enabling single-use secrets for detecting misbehavior
○ Enabling deliver secrets to VMs owned by others

● Very simple usage
○ Simplicity means robustness
○ Can be used as key-value storage for distributed systems (e.g. federated learning)
○ Compatible with existing commands (e.g. using client-side encrypted secrets in lockers)

22

More information

● Service URL:
○ https://vault.services.fedcloud.eu:8200/
○ https://secrets.egi.eu/

● Documentation:
○ https://vault.docs.fedcloud.eu/
○ https://www.fedcloud.eu/

23

https://vault.services.fedcloud.eu:8200/
https://secrets.egi.eu/
https://vault.docs.fedcloud.eu/
https://www.fedcloud.eu/

Thank you for your attention

24

