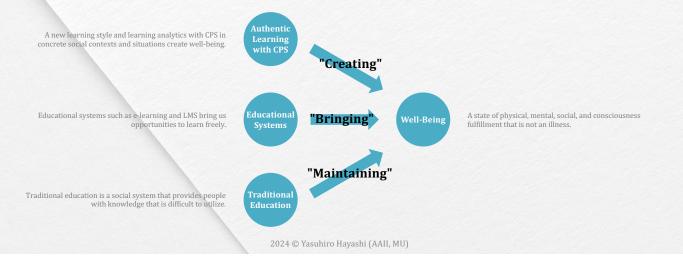

Education Informatics WS, International Symposium on Grids & Clouds 2024 (ISGC2024)

A Context-Based Learning Environment Using Cyber-Physical System For Contribution Degree Calculation

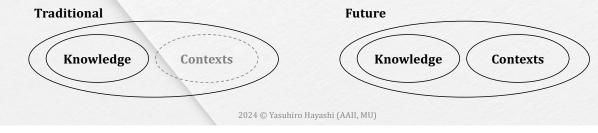
Yasuhiro Hayashi yhayashi@musashino-u.ac.jp

Associate Professor, Department of Data Science, Musashino University, JAPAN Researcher, Research Institute at SFC, Keio University, JAPAN


Overview

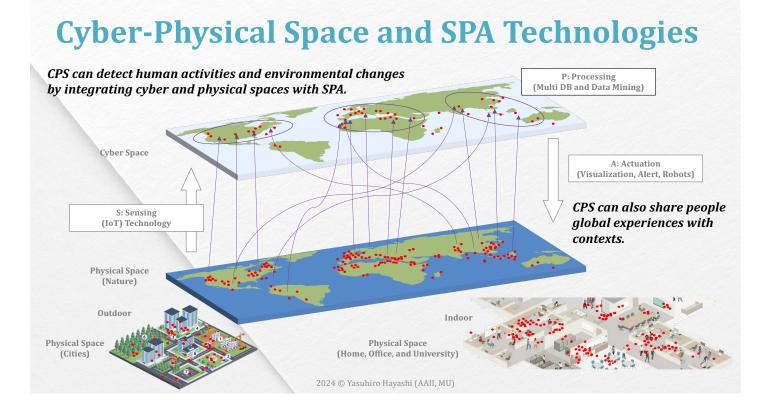
- Explore global collaborative research and its directions
 - 1. What is Authentic Learning, and how to build a Cyber-Physical learning environment required for it?
 - 2. As context: Calculate the degree of contribution to ocean garbage reduction.

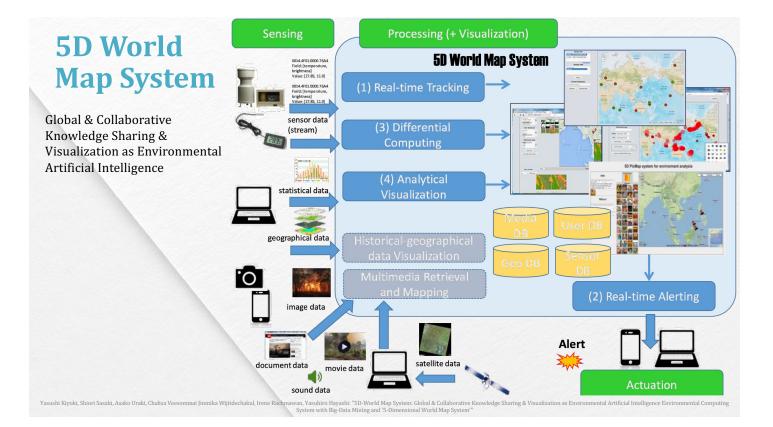
2024 © Yasuhiro Hayashi (AAII, MU)


Vision: Learners' Well-Being by Data Mining of Knowledge Utilization, "Well-Mining"

- Knowledge is utilized in a specific context.
- The context **a cyber-physical system** provides is a realistic and valuable experience for learners.

Knowledge and Contexts

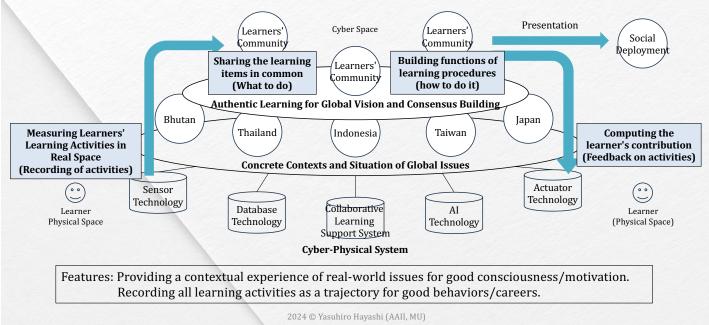

- Simple Question: Why can't people change their behavior against many global issues?
 - We know what actions we should take to address global-scale issues.
 - People can only utilize knowledge with context/situation information on when and where to apply it.
 - In the current educational system, knowledge is often simplified into general propositions or facts and taught separately across different disciplines.
 - **Review the origin:** Rational education system by John Locke (1632-1704). Separation of the basic and the applied began in education.



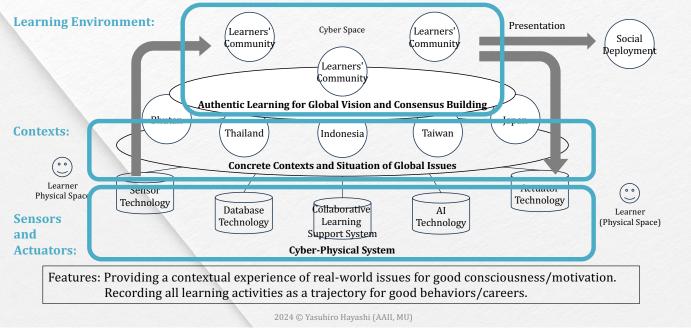
Essential Issue: Transfer of learning

• "**Transfer of learning**" is a phenomenon in which past knowledge, acquired skills, and experiences influence subsequent new learning.

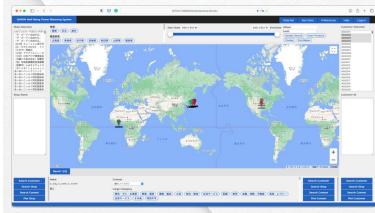
Question-A: (without context)	Write the equation and answer to find the area of the following figure	Question-B: (with context)	 Write the answer. Also, write wny, using words, equations, etc. (3) ひろしさんの家の近くに東公園があります。 東公園の面積と中央公園の面積では、どちらのほうが広いですが。 		
	次の図形の面積を求める式と答えを書きましょう。				
() 平行四边形 Parallelogram		答えを書きましょう。また、そのわけを、言葉や式などを使って書きま		
	Ques	entages of correct answers stion-A: 96%, Question-B: 16% eople can hardly utilize the vledge they have learned daily. 2024 © Yasuhiro Hayashi (AAII, MU)	しょう。		



5D World Map System


• United Nations ESCAP (UN ESCAP) & KEIO SFC Joint Project "5D World Map as an Environmental Artificial

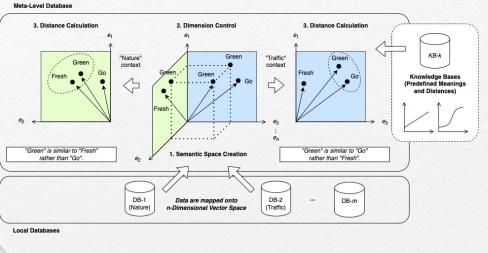
A Context-based Learning Environment with CPS for Authentic Learning



A Context-based Learning Environment with CPS for Authentic Learning

Spatio-Temporal & Contextual Visualization and Discussion Board

Two prototype systems are under development, and they will be integrated. All human activities are mapped onto a semantic space to calculate correlation and extract association rules.


Yasuhiro HAYASHI, Yasushi KIYOKI, Yoshinori HARADA, Kazuko MAKINO and Seigo KANEOYA: "A Spatio-Temporal and Categorical Correlation Computing Method for Inductive and Deductive Data Analysis," Information Modelling and Knowledge Bases XXXIIV, Frontiers in Artificial Intelligence, IOS Press, 2024. $\label{eq:listension} Discussion Results on collaborative online international learning (COIL Project) \\ https://padlet.com/soetosh/2018-f-m2-ku-nyp-coil-ojk2e4jwzjh0$

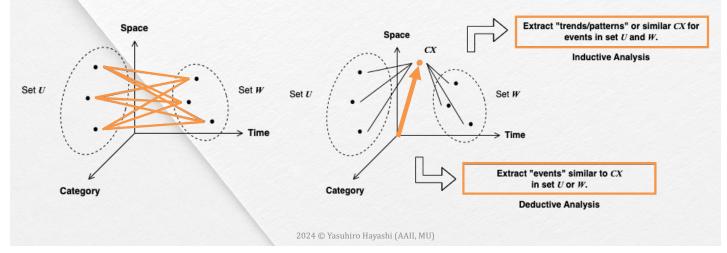
Inspiration: Semantic Computing

A method to calculate semantic association, consists of **MMM & Meta-Level System**, based on contexts that is occurred various events.

The Mathematical Model of Meaning^[1,2]**:** To compute semantic associations between data that change dynamically according to context or situation.

Meta-Level System ^[2,3]: To perform integration and linkage of heterogeneous local database systems by setting up a meta-database system in the upper layer.

[1] Kitagawa, T. and Kiyoki, Y.: "The mathematical model of meaning and its application to multidatabase systems", Proceedings of 3rd IEEE International Workshop on Research Issues on Data Engineering: Interoperability in Multidatabase Systems, pp.130-135(1993).


[2] Kiyoki, Y., Kitagawa, T. and Hayama, T.: "A Metadatabase System for Semantic Image Search by a Mathematical Model of Meaning", Multimedia Data Management- using metadata to integrate and apply digital media --, McGrawHill, A. Sheth and W. Klas(editors), Chapter 7 (1998).

2024 © Yasuhiro Hayashi (AAII, MU)

[3] Kiyoki, Y., Chen, X., Veesommai, C., Wijitdechakul, J., Sasaki, S., Koopipat, C., & Chawakitchareon, P. 'A semantic-associative computing system with multidimensional world map for ocean-environment analysis', Information Modelling and Knowledge Bases XXX, pp. 147-168.

A Spatio-Temporal and Categorical Correlation Computing Method for Induction and Deduction Analysis to Interpret Human Activities

- To compute relationships between two heterogeneous sets U and W in the same vector space by common features (space, time, category).
- To provide inductive and deductive data analysis by applying a context vector as a hypothesis onto the vector space.

Brief Summary of Topic 1

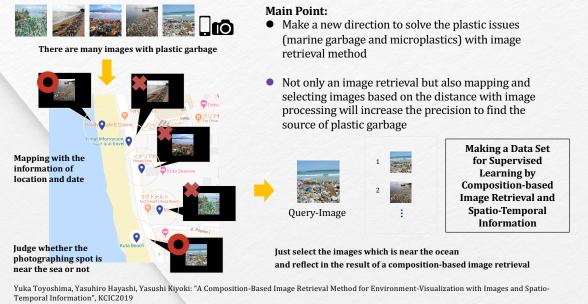
- Authentic: real, genuine, honest-to-goodness
- Authentic Learning: A method to make knowledge function authentically in the actual world while experiencing social and practical issues.

• Cyber-Physical System as Authentic Learning Environment:

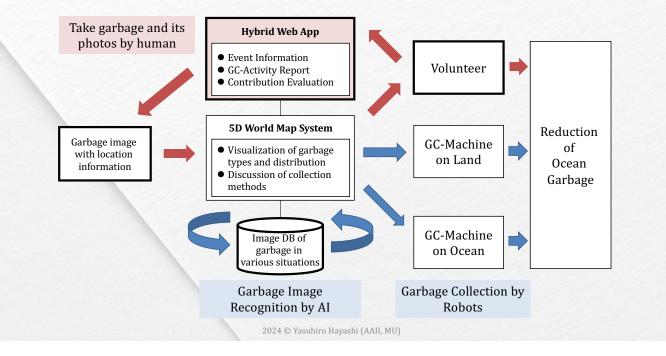
- detects actual human activities and global environmental changes and clarifies the process and essence.
- connects learners to places where real environmental change is occurring.
- gives learners real-world experience in knowledge utilization.

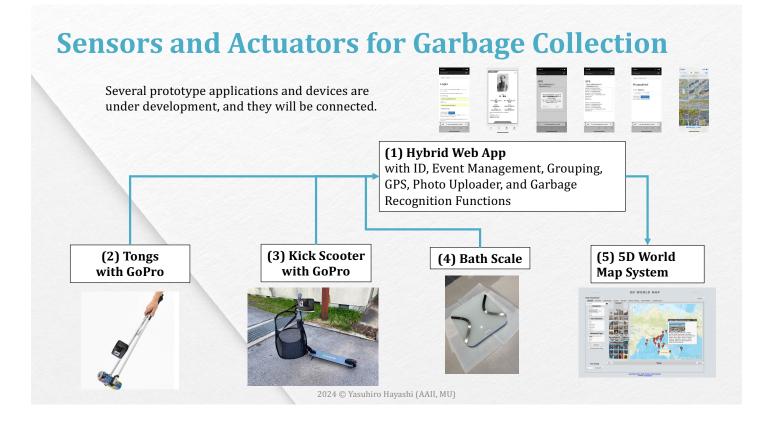
2024 © Yasuhiro Hayashi (AAII, MU)

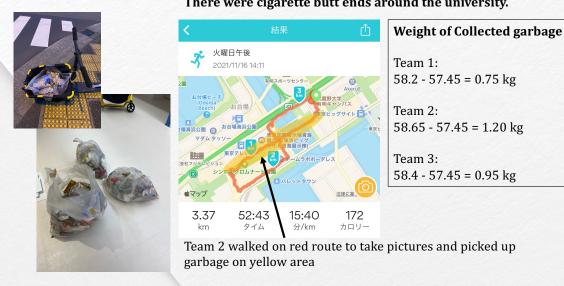
Natural Environment Changes



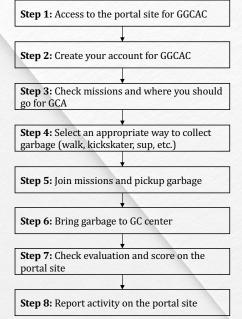
https://infonet.vietnamnet.vn/the-gioi/dat-nuoc-van-dao-doi-mat-voi-tham-hoa-rac-thai-khung-khiep-nhat-lich-su-254177.html


https://www.poandpo.com/news/indonesia-to-reduce-marine-plastic-waste-70-13122019479


Environment-Visualization with Images and Spatio-Temporal Information


2024 © Yasuhiro Hayashi (AAII, MU)

Two Cycles for Garbage Reduction



The results of A GC-Event around MU

There were cigarette butt ends around the university.

Global Garbage Collection Activity Competition (GGCAC) Join Procedure

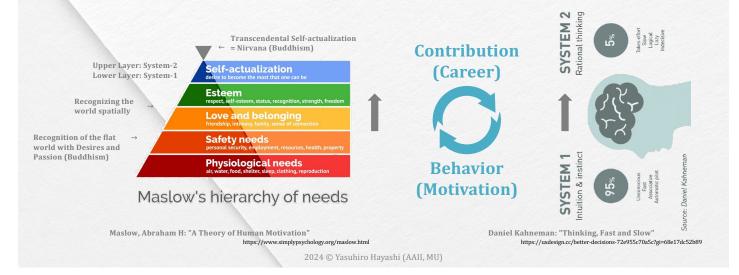
https://ggcac.5dwm.mydns.jp/

2024 © Yasuhiro Hayashi (AAII, MU)

Contribution Degree Calculation

	Static Contribution Degree × Dynamic Co	ontribution Degree
	Volunteer Works Determined by the portal	Garbage Situation Determined by Uploaded Photos and Videos
Static Contribution Degree	 How many people attended the event? How often did people hold the event? How many people taken pictures of garbage with geo code? How much trash could people collect? 	 How accurately did people sort trash? How much trash could people collect from the hardest places?
		ntribution: High ked up garbage)
Dynamic Contribution Degree	Dynamic Contribution Degree = Difficulty Difficulty: Cost for GC (Amount, Weight Location: Number of locations of GC	
	Con (Many people pick 2024 © Yasuhiro Hayashi (AAI	PICTADEREDAY

Green: 9 Categories	Red: Sub-categ	ories	(weig	hts are	indio	cated h	y width)
Psychological wellbeing 幸福な気持ち	Life satisfaction 生活充足度	en	ositive notion きな気分	Negativ emotior 落込んだ	1:	Spiritua	ality: 宗教面
Health 健康	self- reported health status:環境 自己評価 days:健康な			isability: 下自由さ			ntal health: : 神面健康
Time use:時間利用	Work : 仕 爭	F.			SI	eep:睡l	眠
Education:教育	Literacy: 読み書き能力		Schoolin 学校教育	-		ledge: 獲得	Value: 価値
Cultural diversity and resilience 文化の多様性と溌剌さ	Zorig chusm skills 地域文化技能 :		al partic 化活動 参		lang	native juage 言利用	Driglam Namzha : ブータン礼節
Good Governance: 統治の良さ	Political participatio 政治参加	on	Sei	rvices : サ	ービス	面	Governa- nce perfo- rmance 環境責任
Community vitality: 共同体の活力	Donation (time & money) 貢献(時間・金銭)	Sa	afety: 安	全	relatio	nunity onship: さ合い	Family: 家族
Ecological diversity and resilience:環境の多様性と強靭性	Wildlife damage 野生生物損傷		Urba	an issues	:都市	課題	Responsib -ility to environ- ment:環 境責任
Living standards: 生活水準	Income:収入		Assets	:資産		Hou	sing: 居住
				立世界を先駆け /www.cger.nies.			[Vol.29 No.2] 通巻第329号 29001.html


Bhutan Gross National Happiness (GNH) Indicator System

Incentive for Good Human Activities

- Knowledge and its utilization in concrete contexts and situations
- Providing a contextual experience of real-world and global issues
 - Survey and Think (Input)
 - Discussion or Negotiation (Processing)
 - Presentation and Creation (Output)
- Recording all activities as a trajectory for global issues
 - Good behavior is a sign of learning motivation.
 - Good contributions can be a career for the learner.

The Fourth Pillar "Contribution" for Well-Being

• Well-being: A state of physical, mental, social, and **"contribution"** fulfillment that is not an illness.

The Model of Motivation and Contribution

Applying a model of motivation to detect motivation from sensing data and trajectory data in learning activities.

Attention	Relevance	Confidence	Satisfaction		
Inquiry	Immediate Applicability	Learning Requirements	Scheduling		
Humor	Future Usefulness	Self-Confidence	Positive Outcomes		
Variability	Need Matching	Expectations	Unexpected Rewards		
Participation	Experience	Attributions	Natural Consequences		
Concreteness	Modeling	Difficulty	Avoid Negative Influences		
Incongruity & Conflict	Choice		Ç		
		Contribu	ition Degree		
John Keller: "ARCS Model of Motivation"					
	2024 © Yasuhi	iro Hayashi (AAII, MU)			

Authentic Assessment on Learning

				Learner's Activiti	es and Reactions			
		Passive	Learning	Active Learning				
		Remember Understand		Apply	Analyze	Evaluate	Create	
		Knowledge	Comprehension	Application	Analysis	Evaluation	Synthesis	
mation	Factual							
given Knowledge or Information	Conceptual							
	Procedural							
	Meta-Cognitive							
						Made by Prof. Tos	shivuki Yamamo	

A matrix is a knowledge base to evaluate each learner's behaviors against the obtained knowledge in the learning contexts and its trajectory.

Conclusion

Knowledge < Behavior < Contribution < Imagination

- **Topic 1:** The cyber-physical learning environment for authentic learning we have developed can provide learners with real experiences as a learning context for utilizing knowledge.
- **Topic 2:** We also showed the ocean garbage reduction activity as a learning context and the calculation method for calculating the degree of contribution to it.
- **Collaborative Points:** Make an original contribution degree function to evaluate human activities by numerical data and share it on the cyber-physical learning environment!