
HEP User Training Workshop 1

HEP User Training Workshop

Cluster information
The cluster, placed in academia sinica, is registered in Worldwide LHC Computing Grid (WLCG) as Tiar3 in 
Taiwan, called T3_TW_TIDC  and provides resources of 768 CPU cores and 500+ TB storage. For local users, the 
cluster also donates a local job submission UI called TIDC-ui01  under CentOS7 (maybe upgrade in future?). To 
be able be access this cluster, you have to apply a personal account in here. Note that people affiliated to NTU 
and NCU should fill Kai-Feng Chen and Chia-Ming Kuo as PI, respectively. 

Once your application is approved, you can access the cluster by using SSH

ssh -YC <your account name>@tidc-ui01.grid.sinica.edu.tw

and your screen output should look like 

You can also directly access files stored in T3_TW_TIDC  ( /eos/cms/store/user/  ) if you submit CRAB jobs and point 
the storage site to this T3. 

CMS Virtual Organization Membership  (CMS VO)
Besides T3_TW_TIDC , if your analysis needs to access files in the other Tiar clusters of WLCG,  tidc-ui01  also is 
available to create your own Grid certificate for access under the premise that you have a cern account and CMS 
VO Membership.

To have VO Membership, please follow the below steps :

Step 1: Create a personal certificate file in here and click "New Grid User certificate". Follow the indication in 
this web and you can download a certificate file called myCertificate.p12  .  Note that the duration of the 
certificate is only 1 year not permanent.

Step 2: Include the certificate myCertificate.p12  to the web browser like chrome, firefox in order to access 
VOMS Admin server here.

Cluster information

CMS Virtual Organization Membership  (CMS VO)

CernVM File System (CVMFS)

Miniconda (Recommendation for python users)

Setup

Basic usage

HTCondor submission 

Basic usage

https://canew.twgrid.org/ApplyAccount/ApplyAccount.php
https://ca.cern.ch/ca/
https://voms2.cern.ch:8443/voms/cms/register


HEP User Training Workshop 2

Step 3: Fill some personal information and your cern account in VOMS Admin server, you can be a member 
of the CMS VO. More details in here.

Once you have the VO Membership, to get access to WLCG through tidc-ui01 , please put your certificate 
myCertificate.p12  to tidc-ui01  and then do the following commands. These commands only need to do once 
unless you update your myCertificate.p12  .

myCert="myCertificate.p12"

cd ~

mkdir .globus

cd ~/.globus

cp ~/${myCert} .

openssl pkcs12 -in ${myCert} -clcerts -nokeys -out usercert.pem

openssl pkcs12 -in ${myCert} -nocerts -out userkey.pem

chmod 400 userkey.pem

chmod 400 usercert.pem

cd ~

Finally, to authenticate the grid certificate,  you have to do the following commands. A private key x509up_u<your 
UID>  with a duration of 168 hours will be created and assigned to X509_USER_PROXY  environment variable. Then you 
can use the grid resource according to X509_USER_PROXY  as accessing the CMS data or simulated samples in DAS 
or submitting CRAB jobs. Note that you have to reassign X509_USER_PROXY  whenever you login to tidc-ui01  or redo 
the following commands again when x509up_u<your UID>  is expired.

voms-proxy-init -voms cms -rfc -out ${HOME}/x509up_u${UID} --valid 168:00

export X509_USER_PROXY=${HOME}/x509up_u${UID} 

CernVM File System (CVMFS)
For those who would like to use cms software (CMSSW), the cluster provides CernVM File System (CVMFS) 
service by

source /cvmfs/cms.cern.ch/cmsset_default.sh

If you usually need to use CMSSW, please add the above to ~/.bashrc  so that you don’t need to do it whenever 
you login to tidc-ui01 . Then, you can start to setup CMSSW by

export SCRAM_ARCH=slc7_amd64_gcc700

cmsrel CMSSW_10_6_38

cd CMSSW_10_6_38/src

cmsenv

git cms-init

git cms-addpkg ...

...

where SCRAM_ARCH  points out which architecture you will use for CMSSW setup. For example, slc7_amd64_gcc700  
means the software is built under CentOS7  OS + AMD64  64 bits instruction set architecture + GCC7  . However, since 
the cluster is CentOS7  , you can only specify slc7_amd64_gccX  . If you want to check which CMSSW version is 
supported under a given architecture, you can use 

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideLcgAccess#How_to_register_in_the_CMS_VO
https://cmsweb.cern.ch/das/


HEP User Training Workshop 3

scram list | grep "CMSSW"

to list as

Miniconda (Recommendation for python users)
If your analysis framework is based on python  as you need to install a lot of python modules i.e. numpy  , 
matplotlib , coffea , …, instead of using pip install  , it’s recommended to use Miniconda or Miniforge3, these 
package managers for installation. The advantages of the package managers are 

Safely install python modules without affecting libraries in Linux. 

Provide independent environments to avoid interfering with Linux libraries and other environments.

Automatically resolve the dependence of different python modules in order to avoid any module and version 
conflict when installing lots of python modules.

Setup
Step 1 : Download Miniconda/Miniforge3 to $HOME

# Miniconda 

wget "https://repo.anaconda.com/miniconda/Miniconda3-latest-$(uname)-$(uname -m).sh" # for Linux

wget "https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh" # for Mac

# Miniforge3

wget "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh" # for Linux

wget "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh" # for Mac

Step 2 : Install Miniconda/Miniforge3

# Miniconda

sh Miniconda3-latest-Linux-x86_64.sh # for Linux

sh Miniconda3-latest-MacOSX-arm64.sh # for Mac

# Miniforge3

bash Miniforge3-Linux-x86_64.sh # for Linux

bash Miniforge3-MacOSX-arm64.sh # for Mac

Suggestion : When going to the final step of the installation as the following, please click no

Do you wish the installer to initialize Miniforge3

by running conda init? [yes|no]

[no] >>> no

https://docs.conda.io/projects/miniconda/en/latest/
https://mamba.readthedocs.io/en/latest/index.html


HEP User Training Workshop 4

Step 3 : Add the following to ~/.bashrc  to set conda environment

# Miniconda

source ${HOME}/miniconda3/etc/profile.d/conda.sh

# Miniforge3

source ${HOME}/miniforge3/etc/profile.d/conda.sh

Basic usage
Suppose you would like to create an environment named “myenv" with python 3.9  and you can simply do the 
following command

# Miniconda

conda create --name myenv python=3.9

# Miniforge3

mamba create --name myenv python=3.9

You can enter this environment space by

# Miniconda

conda activate myenv

# Miniforge3

mamba activate myenv

or exist from it by

# Miniconda

conda deactivate

# Miniforge3

mamba deactivate

You can also install numpy , for example, into “myenv” when you are in “myenv” by

# Miniconda

conda install numpy

# Miniforge3

mamba install numpy

If you need to install a lot of python modules at the same time, you can create a environment.yml  file as

name: myenv

channels:

  - conda-forge

  - defaults

dependencies:

  - python>=3.10

  - coffea

  - xrootd

  - numba

  - vector

  - dask

  - distributed

  - dask-jobqueue



HEP User Training Workshop 5

  - pandas

  - matplotlib

  - xgboost

where

name  is the environment name;

channels  points out which projects the python modules originate from ; you can choose default , conda-forge , 
bioconda ;

dependencies  records which python modules need to be installed in the environment.

Then install them by

# Miniconda

conda env create -f environment.yml

# Miniforge3 (recommended)

mamba env create -f environment.yml

Recommend to use mamba  to accelerate and avoid failure when resolving packages if there are too many 
modules need to be installed.

HTCondor submission 
In fact, tidc-ui01  itself is only 4 CPU cores so that it’s inefficient to execute very heavy programs in this UI. 
Instead, we should perform parallel computing under tidc-ui01  through HTCondor job submission, that is, to use 
the 768 CPU cores in this T3 cluster. You can find out the HTCondor introduction in here.

Basic usage
To submit common HTCondor jobs, two files need to be prepared, an executable file and a HTCondor 
configuration file. The executable file is usually a bash script or a python script which is customized by users. 
However, for bash scripts, It’s strongly recommended to write absolute paths and avoid some default environment 
variables/alias such as $HOME , to avoid any job failed because you never know where the jobs run. Here has two 
example scripts:

Jobs under CMSSW

#!/bin/bash

# Setup grid certificate if necessary

export X509_USER_PROXY=/dicos_ui_home/<your account>/x509up_u<your uid>

# Setup CMSSW environment

source /cvmfs/cms.cern.ch/cmsset_default.sh

cd /.../CMSSW_X_Y_Z/src

# Note that it's not `cmsenv` but the following

eval $(scram runtime -sh)

...

Jobs under Miniconda3 

https://htcondor.readthedocs.io/en/latest/


HEP User Training Workshop 6

#!/bin/bash

# Setup grid certificate if necessary

export X509_USER_PROXY=/dicos_ui_home/<your account>/x509up_u<your uid>

# Setup conda environment 

source /dicos_ui_home/<your account>/miniconda3/etc/profile.d/conda.sh

# Enter your emvironment space

conda activate <your env name>

...

conda deactivate

HTCondor configuration files need to follow the standard HTCondor syntax (More details in here). Here has a 
basic config file:

executable  = runjobs.sh

arguments   = $(infile) $(outfile)

output      = output/runjob.$(ClusterId).$(ProcId).out

error       = error/runjob.$(ClusterId).$(ProcId).err

log         = log/htc.log

request_cpus      = 1 

request_memory    = 512M

request_disk      = 1G

max_retries = 1

queue infile, outfile from IORecord.dat

executable  : Your executable file, i.e. a bash or python script.

arguments (Option)  : Arguments that need to be inputed to your executable file.

output  : Create files to record output message.

error  : Create files to record error message.

log  : Create files to record HTCondor job log.

request_cpus (Option)  : Number of CPU cores is requested in each job. However, the cluster only allow 1 core.

request_memory (Option)  : Memory is requested in each job.

request_disk (Option)  : Storage is requested in each job.

max_retries (Option)  : Number of rerun when some jobs are failed.

queue  : Number of jobs. You can write only queue  for a single job or queue 10  for 10 jobs.

However, the syntax of the queue  in the above example could be more realistic when performing parallel 
calculation. The HTCondor config file actually allows to include the arguments of the executable file through 
external files as “IORecord.dat” in the above config file. Here is the content of “IORecord.dat” as

input1.root output1.root

input2.root output2.root

input3.root output3.root

input4.root output4.root

input5.root output5.root

https://htcondor.readthedocs.io/en/latest/index.html


HEP User Training Workshop 7

Namely, 

queue infile, outfile from IORecord.dat

means each line in “IORecord.dat” will be assigned as infile  and outfile  in the config file and make a job. 
Therefore, total 5 jobs are submitted.

Once you finish these two files, you can submit it by

condor_submit example.sub

Your screen will display:

Monitor your job status by

condor_q

Your screen will display:

If you would like to kill submitted jobs, you can use the following commands 

# Kill all jobs belonging to you

condor_rm <your account>

# Kill according to job id

condor_rm <job id>


