

DODAS: How to effectively exploit heterogeneous clouds for scientific computations

Daniele Spiga INFN (spiga@infn.it)

on behalf of DODAS Team

International Symposium on Grids and Clouds 2018 in conjunction with Frontiers in Computational Drug Discovery

16-23 March 2018 Academia Sinica,Taipei, Taiwan

EOSC-hub receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 777536.

- Introduction to DODAS
 - Scientific context and Motivations
- DODAS and INDIGO DataCloud project
 - Design and principles
- Architecture

- DODAS and Compact Muon
 Solenoid Experiment
 - Results
- DODAS a Thematic Service in the context of EOSC-hub project
 - The Alpha Magnetic Spectrometer Experiment

EOSC-hub HEP Community and Compact Muon **Solenoid experiment**

LHC Luminosity increases

- Trigger rate on 2026+ = up to 10 kHz
- Moreover, 2026+: new detectors
 - More DAQ channels, Bigger events

Expect a factor $3x10x2 \approx 50$ (?) of complexity \rightarrow huge computing challenge

- Experiments are looking at combining several solutions
 - Software, Event model, infrastructure.
- \rightarrow Need to be able and use whatever we are offered as computing resource

ISGC 2018, 16-23 March Academia Sinica, Taipei

EOSC-hub A Service for HEP data processing

In this context, DODAS has been developed to allow

> Opportunistic resources integration

 Targeting both private and pubblic cloud providers

> Extension of already existing facility

Both to absorb peaks of usage and to generate mission specific facilities

User-friendly computing infrastructure generation and management

 of computing cluster to analyse research data

Look to the future:

• DODAS design compliant with future paradigms

The suggested LHC computing model

EOSC-hub The Genesis of DODAS: INDIGO-DataCloud

INDIGO - DataCloud Better Software for Better Science

The INDIGO Main Objective:

- To develop software components and solutions to facilitate (or simply make possible) the exploitation of distributed cloud and storage resources through public or private infrastructures.
 - Tailored to science and targeting multi-disciplinary scientific communities

What matters at the end... are the applications.

EOSC-hub Building services using INDIGO's Brick Box

There is a huge set of tools and solutions available, but **there is NOT a one-size-fit-all solution**

- Open, Standard-based, flexible and extensible **building blocks**
 - Each use case can compose and customize

Allow the setup of complex services and application as friendly as creating a single Virtual Machine.

Batch systems, databases, Big Data platforms etc etc...

• Automate setup of intricate workflows with intricate configurations

 Dynamic Cluster with multiple software dependences, interactions with experiment specific internal/external services..

• Abstract underlying infrastructures

 To avoid learning Cloud APIs for any laaS to exploit, as in the case of Hybrid Cloud model

Abstraction

Definition of resource requirements via extensible **TOSCA** templates Full independence from specific Cloud infrastructures [Infastructure Manager]

Automation

Automated software and service configuration via Ansible roles Automated horizontal scalability of the instantiated resources [Clues]

Self-healing

Self-healing for applications and services [Mesos/Marathon]

EOSC-hub DODAS Architectural Pillars (cont)

Multi-cloud support

Automatically address multiple and heterogeneous Cloud infrastructures [PaaS Orchestrator]

Flexible and federated authentication mechanism

- Support to multiple authentication methods [Identity Access Management]
 - OpenID Connect, SAML2.0, LDAP, Local (Username/Passwd)
- Identity harmonization
 - Guarantees a single identity irrespective of authentication method
- Support for services relying on heterogeneous (and legacy) AuthN mechanisms

Specific DODAS Extension Integrated with existing building blocks

EOSC-hub A key aspect: this is not a community specific Service

- Everything is *experiment agnostic*
 - Flexible enough to support multiple and diverse use cases
- Highly Customizable: By design E-PaaS provides three major handles

ANSIBLE

+

To support user tailored computing environments

To automate configuration and deployment of custom services and/or dependencies

To define input parameters and customize the workflow execution

→ All of this embedded in a human readable YAML file

EOSC-hub Currently Supported Communities

Daniele Spiga

EOSC-hub CMS Job Submission Infrastructure

HTCondor Global Pool

 In the first stage of matchmaking, glideinWMS frontend matches jobs to their desired sites and requests the glideinWMS factory to send glideins (properly configured condor tar ball)

• The 2nd stage of matchmaking is when a job gets matched to a slot once the condor starts on the worker node and makes itself available in the pool

• Glidein pulls in the job and then GLExec is used to switch to central production or analysis user's credentials

EOSC-hub DODAS in the CMS Global Pool

EOSC-hub Monitoring System

ISGC 2018, 16-23 March Academia Sinica, Taipei

3/16 08:00

The project starts **in June 2016**: The CMS use case in the context of INDIGO

- **Spring 2017** selected as solution to generate CMS ephemeral site using a 20k\$ Microsoft Azure Grant
 - [See: Dynamic extension of INFN-CNAF Tier1 Data Center]
- Mid 2017 DODAS in Helix Nebula project [will run for the whole 2018]
 - Extensively used on TSystem IaaS Provider
- Summer 2017 selected as Thematic Services in EOSC-hub project
 - In this context has been prototyped the integration with AMS computing workflows

[See: Harvesting dispersed computational resources with Openstack: a Cloud infrastructure for the Computational Science community <u>M. Mariotti et al</u>

INDIGO - DataCloud

Daniele Spiga

- **EOSC-hub** DODAS Thematic Service : AMS integration
 - AMS computing model has not been originally designed to cope with the cloud computing paradigm
 - AMS software environment is **not highly portable**
 - Cost for deploying AMS environment on "new" resources is too high
 - Setting-up environment requires huge effort wrt obtained gain
- All this appears to be a limiting factor in the scope of the data analyst daily work
 - it does not result trivial to exploit modern computing infrastructures such as cloud IaaS

HTCondor Batch

System as A Service

- Thematic Service under EOSC-hub
 - Attract new scientific communities seeking to easily exploit Clouds
 - For Instantiate batch system and Machine Learning frameworks
 - Integrate EOSC-hub service (EOSC-hub portfolio services)
 - E.g. Accounting, Monitoring etc etc...
- Extend and integrate **data ingestion solutions**
 - Dynamic on-demand smart data cache to optimize I/O

• Extend the BigData support e.g. adding more frameworks and libraries

 "Dynamic On-Demand Analysis Service" seamless integrated into existing HTCondor Global Pool of CMS

- Currently in production phase

• Thematic Service under the EOSC-hub Project

- AMS prototype has been prepared
- http://www.eosc-hub.eu/

• Successfully tested several scenarios, both private and public providers

- DODAS demonstrated reduction of costs through setup and operational efficiency increase
- DODAS experts are available for consultancy and training interested communities.
 - Contact spiga@infn.it

Thank you for you attention

spiga@infn.it http://www.eosc-hub.eu/

EOSC-hub

