A Convolutional Neural Network Approach for Estimating Tropical Cyclone Intensity Using Satellite-based Infrared Images

Jay Samuel Combinido¹, John Robert Mendoza^{1,2}, Jeffrey Aborot^{1,2} ¹ Advanced Science and Technology Institute, Department of Science and Technology ² University of the Philippines, Diliman, Philippines

> International Symposium on Grids and Clouds Academia Sinica, Taipei, Taiwan 19 March 2018

Aircraft reconnaissance

Geostationary satellite imagery

http://www.aoml.noaa.gov/hrd/Landsea/gw_hurricanes/fig17.jpg

Central dense overcasts (CDO) + outer banding features (Dvorak 1975)

Cloud organization properties Inner core characteristics Radius of curvature Rain rate

Objective techniques ^[1-6]

Commonality: feature extraction in a image classification problem

- 1. C. S. Velden, T. L. Olander, and R. M. Zehr, "Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite infrared imagery," Weather and Forecasting, vol. 13, pp. 172–186, 1998.
- 2. M. F. Piñeros, E. A. Ritchie, and J. S. Tyo, "Objective measures of tropical cyclone structure and intensity change from remotely-sensed infrared image data," Geoscience and Remote Sensing IEEE Transactions on, vol. 46, no. 11, pp. 3574–3580, 2008, doi:10.1175/WAF-D-10-05062.1.
- 3. —, "Estimating tropical cyclone intensity from infrared image data," Weather and Forecasting, vol. 26, pp. 690–698, 2011, doi:10.1109/TGRS.2008.2000819.
- 4. A. Kulkarni, R. Bankert, and M. Hadjimichael, "Tropical cyclone intensity estimation using neural networks," in ASPRS Annual Conference, San Diego, California, 2010.
- 5. N. Jaiswal, C. M. Kishtawal, and P. K. Pal, "Cyclone intensity estimation using similarity of satellite IR images based on histogram matching approach," Atmos. Res., vol. 118, pp. 215–221, 2012, doi:10.1016/j.atmosres.2012.07.006.
- 6. Y. Zhao, C. Zhao, R. Sun, and Z. Wang, "A multiple linear regression model for tropical cyclone intensity estimation from satellite infrared images," Atmosphere, vol. 7, no. 40, 2016, doi:10.3390/atmos7030040.

Convolutional neural networks

Needed: image-label pairs

MNIST (grayscale) CIFAR10 (grayscale) IMAGENET (RGB images)

Applications to remote sensing

- 1. M. Castelluccio, G. Poggi, C. Sansone, and L. Verdoliva, "Land use classification in remote sensing images by convolutional neural networks," arXiv:1508.00092, 2015.
- 2. M. Längkvist, A. Kiselev, M. Alirezaie, and A. Loutfi, "Classification and segmentation of satellite orthoimagery using convolutional neural network," Remote Sens., vol. 8, no. 4, p. 329, 2016, doi:10.3390/rs8040329.
- 3. F. Hu, G. Xia, J. Hu, and L. Zhang, "Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery," Remote Sens., vol. 7, no. 11, pp. 14 680–14 707, 2015, doi:10.1016/j.atmosres.2012.07.006.
- 4. Z. Huang, Z. Pan, and B. Lei, "Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data," Remote Sens., vol. 9, p. 907, 2017, doi:10.3390/rs9090907.

Training process

ISGC | 21 March 2018

Images \rightarrow Tropical cyclone IR images from Kochi (2015)¹ Labels \rightarrow Intensity values from JMA best track data²

[2] http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/besttrack.html

Training process

Model is robust and comparable to previous feature-based approach.

Ă

COMPARISON OF THE MODEL PERFORMANCE WITH EXISTING FEATURE-BASED TECHNIQUES.

Technique	RMSE (knots)		
Piñeros et al. [7]	13 - 15		
Zhao et al. [10]	12.01		
Bankert et al. [5]	19.80		
Kulkarni et al. [8]	22.93		
Our model	13.23		

	Input image Filter output		intensity		Best track intensity		
a	Soudelor @105 knots (08/04/2015 12 UTC)				-	95	105
b	Estimate: 95 knots Haima @105 knots (10/18/2016 12 UTC)				-	102	105
С	Chan-hom @40 knots (07/01/2015 06 UTC)				-	41	40
d	Nock-ten @105 knots (12/24/2016 18 UTC) Estimate: 54 knots				-	54	105
e	Megi @35 knots (09/23/2016 18 UTC)	stack2 conv1	stack3 conv1	stack4 conv1	-	83	35
	Estimate: 83 knots	stack2_conv1	stack3_conv1	Stack4_conv1		00	

	Input image	Images that maximize stack2_conv1	Estimated intensity	Best track intensity
a	Soudelor @105 knots (08/04/2015 12 UTC) Estimate: 95 knots		95	105
b	Haima @105 knots (10/18/2016 12 UTC) Estimate: 102 knots		102	105
С	Chan-hom @40 knots (07/01/2015 06 UTC)		41	40
d	Nock-ten @105 knots (12/24/2016 18 UTC) Estimato: 54 knots	Operation similar to Pineros (2010, 2011) and Zhao, et al. (2016)	54	105
e	Megi @35 knots (09/23/2016 18 UTC) Estimate: 83 knots stack2_conv1	Consistent with Dvorak (1975)	83	35

12 100 10 - 90 Estimated intensity, \hat{y} Variance, V(f = 1)- 80 8 - 70 - 60 6 - 50 4 - 40 2 + 2 6 10 . 12 8 4 Variance, V(f=0)

Summary and recommendations

- Explored a CNN-based approach for estimating TC intensity based only on grayscale IR images
 No explicit feature extraction required
- Model looked for organized cloud circulation and the presence/absence of an eye
- IR + other sources (e.g. microwave)

A Convolutional Neural Network Approach for Estimating Tropical Cyclone Intensity Using Satellite-based Infrared Images

Jay Samuel Combinido¹, John Robert Mendoza^{1,2}, Jeffrey Aborot^{1,2} ¹ Advanced Science and Technology Institute, Department of Science and Technology ² University of the Philippines, Diliman, Philippines

> International Symposium on Grids and Clouds Academia Sinica, Taipei, Taiwan 21 March 2018

