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Dubochet, Frank, Henderson

""for developing cryo-electron microscopy for the high-resolution
structure determination of biomolecules in solution'
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of the photographic reproduction i 4.5 A, although that of the diffraction pattern on
the original plate was 3.4 A,
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The power of direct electron camera

Atomic structure
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De-blurring by correcting in-plane motion
(Li and Cheng, 2013)
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Cryo-EM Virus Polymerase Recent



Achieving near atomic resolution with a
direct electron camera (DE-20)

2013-2015: 3.6 A DGNNV structure by cryo-EM
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The power of sorting heterogeneity:
Likelihood-based algprithm
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lllustration taken from a paper describing model bias

Richard Henderson PNAS 2013;110:18037-18041

the classical demonstration that the portrait of Einstein can be extracted from a few thousand images
of pure random noise
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CHAPTER TEN

AN INTRODUCTION TO
MAXIMUM-LIKELIHOOD METHODS IN

CRYO-EM

Fred ]. Sigworth,* Peter C. Doerschuk,’ Jose-Maria Carazo,* and
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One example of straightforward likelithood optimization in cryo-EM 1s the
estimation of the underlying signal from a series of noisy, structurally homo-
geneous, and aligned 2D 1mages. Let us assume the following data model:

X=A+0G,, withi=1,...,N, (10.10)

(Xff_Aj)z N (X - AP
P(Xi0) = H —207 _(?) pr{ —2a° }:

(10.11)



Figure 10.3 An example of direct MLE calculation. (A) An image A with a zoom
window centered on one individual pixel value with value A;is shown. (B) Three
copies of image A with different instances of white Gaussian noise are shown together
with zoom windows on the same pixel j with pixel values Xj;, X5j, and Xj;. (C) the PDF
of the jth pixel in the noisy imiiﬁ_veEs is shown as a Gaussian curve centered at A; and with
SD ©. Direct calculation of 4; is performed by averaging over Xy, X5j, and Xj;. (D)
The MLE of the entire image A is shown together with a zoom window, centered on
Ajm. Note that the MLE of the image will approach the image in (A) if larger numbers
of noisy images are available.



For any given transformation ¢ and parameter set @, the conditional
probability of observing image Xj 1s again expressed as a multiplication over
] Gaussian distributions, this time centered at the correspondingly oriented
reference 1mage R A:

1\ X: — Ry A
P(X;|¢p,0) = ’}—g exp | —')gf | . (10.17)

P(X!|¢=Q)

w3k Al YR SR AR ST S HE - A

v

oA
3

Figure 10.4 The PDF of a noisy image as a function of its relative orientation with
respect to a reference image. (A) Xj, a rotated and noisy version of reference image A
from Fig. 10.3A is shown. (B, top panel) The probability P(X;|¢, @) of observing X;
given a model @ that comprises image A is shown (on an arbitrary scale) as a function of
the relative orientation ¢. The bottom panel shows RyA, that is, image A rotated

according to ¢. Note that P(X;|¢, @) is highest when ¢ corresponds to the correct
orientation of X,.



The incompleteness of the observed data lies in the fact that the relative
orientations of all images have remained unnb'-;f:rw:d in the experiment. The
complete data set w ould be (X, )), with Y = (¢4, @5, ..., Pp). and finding
the MLE for the complete data set would be as trivial as described in the
simple example above.

For the incomplete case, the marginal log-likelihood function, cf.
Eq. (10.14), 1s given by:

N

=) hw[ P(X;|, @) P(p|@)dep. (10.16)

i=1



Disentangling
conformational states

of macromolecules in
3D-EM through likelihood
optimization

Sjors HW Scheres!, Haixiao Gao?, Mikel Valle!?,
Gabor T Herman?, Paul P B Eggermont?,
Joachim Frank* & Jose-Maria Carazo!

Although three-dimensional electron microscopy (3D-EM)
permits structural characterization of macromolecular
assemblies in distinct functional states, the inability to classify
projections from structurally heterogeneous samples has
severely limited its application. We present a maximum
likelihood-based classification method that does not depend
on prior knowledge about the structural variability, and
demonstrate its effectiveness for two macromolecular
assemblies with different types of conformational variability:
the Escherichia coli ribosome and Simian virus 40 (SV40)
large T-antigen.



Conformation and composition heterogeneity problem

“Cryo-EM will Make a very big Difference”

(February 6%, 2015) It is rumoured that structural
biology is undergoing a revolution. Once dominated by
X-ray crystallography methods, cryo-electron
microscopy (cryo-EM) is now transforming the

field. Sjors Scheres is one of the driving forces behind
A this revolution.

LT: How did RELION change the field of structural biology?

The field of cryo-EM is undergoing a revolution. There are two reasons for that: one is
the development of a new detector for electrons, and that | think is the most important
one. Before people were taking pictures on photographic film, or on CCD cameras,
which would introduce quite a bit of noise in the imaging process. The other thing that
has improved is better image processing and RELION fits into that category. What'’s
special about RELION is that it can find an optimal way of filtering the data
automatically, whereas with older programmes, you had to be quite experienced in
image processing to get good results. With RELION you don’t need to be an expert,
that’s the main contribution. Also you can separate distinct 3D structures from a single
dataset with RELION, that’s very important. At the moment, we’re working on making
the technigue work for smaller protein complexes, and also for those that are floppy,
things that have not just two or three conformations, but a whole continuous spectrum
of conformations


http://www2.mrc-lmb.cam.ac.uk/group-leaders/n-to-s/sjors-scheres/
http://www2.mrc-lmb.cam.ac.uk/group-leaders/n-to-s/sjors-scheres/
http://www2.mrc-lmb.cam.ac.uk/group-leaders/n-to-s/sjors-scheres/

Likelihood estimator formalism
(extracted from Lecture 7)

The incompleteness of the observed data lies in the fact that the relative
orientations of all images have remained unobserved in the experiment. The
complete data set would be (X, )), with ) = (¢4, ¢, . .., ¢ ). and finding
the MLE for the complete data set would be as trivial as described in the
simple example above.

For the incomplete case, the marginal log-likelihood tunction, cf.
Eq. (10.14), 1s given by:

L(®)= Z l{}gli P(X;p.O)P(h|O)do. (10.16)
J

=1

X: experimental observation;
¢: the best angles to be determined,;
0: the best 3D reconstruction to be obtained



Extending the “Likelihood estimator”
to cope with multiple conformation classes

K
K=

/ P(Xi|k.

i

0,0)P(k, ¢|®)dg
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Fig. 1. Schematic model of pre-mRBMA splicing.



China has risen: Yigong Shi and the world
largest cryo-EM center at Beijing!
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Structure of multi-component sub-complexes

NTC related

B

U5 snRNP U2 snRNP NTC core snRNA components NTC related complex

Spp42 Cwfi0 Cwf17 Msi1 Lea1 Cwf8 cdc5 Cwi7 Cwf3 U5 snRNA U6 snRNA Prp4d5 Cwf5 Cwf11
U5 snRNA Sm ring U2 snRNA Sm ring Cwf2 Cwf4 Cwf1 Cwf15 U2 snRNA Lariat intron Cwf14 Cwf19
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A 200 kV Field-emission cryo-EM Wu et al., EMBO J 31 (2012)

Polymerase



The power of “"automated” cryo-EM
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Resolution vs. particle number
(Case for icosahedral particle)

16 1

15 -

14 -

IN(N_.,d)

12 -

11 -

10

13 1

Y 7 (7.2, 484)

”

o,

”’
”

,/

I
(3.8,30,908) @l o\ v (3.6, ~30,000)

f WHC, Sep 2014, DE-20
./

7’

”
% (4.1, 15,454)

”
L’ (4.2,7,728)
PR
. (4.3, 3,865)

’

”
’

.7  (5.37,1,933)
(6.5, 967)

@ (87.243 @ DDD B-Factor = 165 A2
(9.4, 112)
0.005 0.01 0.015 0.02 0.025 0.03

1/d2 (A2

DE-12, JEM3200FSC. Wang Z... Chiu W. Nat Comm. 2014






Ir](Nparticle)

15

14

13

12

11

10

Resolution vs. ASU number
(Case for protein complex)
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Do we still need automated cryo-EM?
(Chang et al., 2010)

Table 2. Total Number of Particles Required to Reach a Target Resolution
Defocus (um) (CEM)

Resolution (A) Ideal ZEM (30% loss) 0.25 0.5 1 2
pol Il 11 ~800 ~1,570 NA ~3,200 ~2,200 ~3,200
45 ~4.800 ~15.000 <500000 38000 ~48.000 2
1lm 33 ~13,000 ~60,000 <500,000 ~260,000 ~400,000 >500,000 I
- ~500 ~T.a00 NA NA ~3,900 ~6,
45 ~5,000 ~16,000 NA NA >600,000 >600,000
3.3 ~21,000 ~48,000 NA NA >1,000,000 >1,000,000
T7 pol-lys 11 ~4,000 ~6.400 NA NA ~63,000 ~160,000
4.5 aaed 000 =E2.000 AN BLA ~1 (00 000 ~1 (00 000
I 33 ~66.000 ~160,000 NA NA >1,000,000 +1,000000 |

Prediction made on the basis of single conformation & 90 degree
phase shift (Chang et al., 2010)



Atomic cryo-EM requires huge amount of image DATA:

“Titan Krios” has catalyzed the DATA FLUX

energy

proqress of reaction



“Titan Krios” brings robot-revolution and fierce
competition follows suit

Very stable optics
Auto-loading
Multiple specimens
Remote control

High-throughput:
2000 movies/day (10T)

24/7




Direct electron camera brokgn cryo-EM
resolution.

Likelihood algorithm disentdis the mixed
conformation or compositionilblem in
solution.

wwlhe more the better: Titan




