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The Flexible Docking Problem
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Designing the Scoring Function

Avoid steric contacts (where shape
complementarity is the major factor for docking).

Take chemical nature of each atom into account.
Force field-based scoring.

Map scoring function to binding free energies, if
possible.

Reproduce X-ray crystallographic or NMR results.



Automated Docking with Grid-Based Energy Evaluation

Elaine C. Meng, Brian K. Shoichet, and Irwin D. Kuntz*
Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco,

California 94143-0446

Received 24 September 1991; accepted 4 December 1991

The ability to generate feasible binding orientations of a small molecule within a site of known structure is
important for ligand design. We present a method that combines a rapid, geometric docking algorithm with
the evaluation of molecular mechanics interaction energies. The computational costs of evaluation are minimal
because we precalculate the receptor-dependent terms in the potential function at points on a three-
dimensional grid. In four test cases where the components of crystallographically determined complexes are
redocked, the “force field” score correctly identifies the family of orientations closest to the experimental
binding geometry. Scoring functions that consider only steric factors or only electrostatic factors are less
successful. The force field function will play an important role in our efforts to search databases for potential

lead compounds.
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Dock Scoring Functions

e Contact Scoring
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Automated Docking Using a Lamarckian
Genetic Algorithm and an Empirical
Binding Free Energy Function

GARRETT M. MORRIS," DAVID S. GOODSELL,
ROBERT S. HALLIDAY,> RUTH HUEY," WILLIAM E. HART,?
RICHARD K. BELEW," ARTHUR J. OLSON'
! Department of Molecular Biology, MB-5, The Scripps Research Institute, 10550 North Torrey Pines
Romi La Jolla, California 92037-1000
H( wlett-Packard, San Diego, California
? Applied Mathematics Department, Sandia National Laboratories, Albrrqmqm NM
Dtpmnm nt of Computer Science & Engineering, University of California, San Diego, La Jolla, CA

Received February 1998; accepted 24 June 1998

ABSTRACT: A novel and robust automated docking method that predicts the

bound conformations of flexible ligands to macromolecular targets has been

developed and tested, in combination with a new scoring function that estimates

the free energy change upon binding. Interestingly, this method applies a

Lamarckian model of genetics, in which environmental adaptations of an

individual’s phenotype are reverse transcribed into its genotype and become

heritable traits (sic). We consider three search methods, Monte Carlo simulated

annealing, a traditional genetic algorithm, and the Lamarckian genetic algorithm,

and compare their performance in dockings of seven protein—ligand test systems

having known three-dimensional structure. We show that both the traditional

and Lamarckian genetic algorithms can handle ligands with more degrees of

freedom than the simulated annealing method used in earlier versions of

AUTODOCK, and that the Lamarckian genetic algorithm is the most efficient,

reliable, and successful of the three. The empirical free energy function was H H .

calibrated using a set of 30 structurally kllO\'\}n protein—ligansycomplexes with Times Clted ‘ 8296 (2018/3/15)
experimentally determined binding constants. Linear regression analysis of the

observed binding constants in terms of a wide variety of structure-derived 7
molecular properties was performed. The final model had a residual standard

error of 9.11 k] mol~" (2.177 kcal mol~") and was chosen as the new energy



AutoDock Scoring Function

* Afree energy-based semi-empirical approach.

W, 0.1485
Wy 0.0656
W, 0.1146
W, 0.3113
W, 0.1711

Morris et al., J. Comput. Chem. 19: 1639-1662 (1998)
Times Cited: 8296 (2018/3/15)
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Seven ligands as examples showing the
rotatable bonds as curly arrows: (a)
benzamidine; (b) camphor; (c)
phosphocholine; (d) biotin; (e) HIV-1
protease inhibitor XK-263; (f)
isopropylated sialic acid; and (g)
methotrexate. Note that two ligands, (e)
and (f), contain hydroxyl rotors, which are
not counted in the total number of
torsional degrees of freedom; note also
that cyclic rotatable bonds are excluded.



TABLE I
Protein-Ligand Complexes Used to Calibrate Empirical Free Energy Function, Along with Brookhaven Protein
Data Bank (PDB) Accession Codes and Binding.

Protein—ligand complex PDB code Log(K,)®
Concanavalin A [ a-methyl-o-mannopyranoside 4cna 2.00
Carboxypeptidase A / glycyl-L.-tyrosine 3cpa 3.88
Carboxypeptidase A / phosphonate ZAA=P=(0O)F 6cpa 11.52
Cytochrome P-450_,,,, / camphor 2cpp 6.07
Dihydrofolate reductase / methotrexate Adfr 9.70
a-Thrombin / benzamidine 1dwb 292
Endothiapepsin / H-256 zerg 7.22
e-Thrombin /MQPA letr 7.40
s-Thrombin / NAPAP lets 8.52
s-Thrombin / 4-TAPAP 1ett 6.19
FK506-binding protein (FKBP) / immunosuppressant FK506 1tkf 9.70
p-Galactose / p-glucose binding protein / galactose 2gbp 7.60
Hemagglutinin/ sialic acid 4hmg 2565
HIV-1 Protease / A78791 1hvj 10.46
HIV-1 Protease / MVT101 4hvp 6.15
HIV-1 Protease [ acylpepstatine Shvp 5.96
HIV-1 Protease / XK263 1hvr 9.51
Fatty-acid-binding protein / C,;COOH 2ifb 5.43
Myoglobin (ferric) / imidazole 1mbi 1.88
McPCe&03 / phosphocholine 2mep 5.23
B-Trypsin / benzamidine 3ptb 4.74
Retinol-binding protein / retinol irbp 6.72
Thermolysin / Leu-hydroxylamine 4tin 3.72
Thermolysin / phosphoramidon 1tlp 7.55
Thermolysin / n-(1-carboxy-3-phenylpropyl)-Leu-Trp 1tmn 7.30
Thermolysin / Cbz-Phe-p-Leu-Ala (ZFpLA) 4tmn 10.19
Thermolysin / Cbz-Gly-p-Leu-Leu (ZGpLL) 5tmn 8.04
Purine nucleoside phosphorylase (PNP) / guanine 1ulb 5.30
Xylose isomerase / CB3717 2xis 5.B2
Triose phosphate isomerase (TIM) / 2-phosphoglycolic acid (PGA) 2ypi 4,82

* Adapted from Bohm.®*

J. Comput. Chem. 19: 1639-1662 (1998)



Determining the optimal

weighting factors

TABLE Il
Calibration of Empirical Free Energy Function.
Residual
standard Multiple
Model® error R2 AGvdwb AGe:«‘.tat AGhbond AG;tor AGsolv
A 2.324 0.9498 0.1795 0.1133 0.0166 0.3100 0.0101
(0.0263) (0.0324) (0.0625) (0.0873) (0.0585)
B 2.232 0.9537 0.1518 0.1186 0.0126 0.3548 0.1539
(0.0269) (0.0246) (0.0382) (0.0890) (0.1050)
C 2177 0.9559 0.1485 0.1146 0.0656 0.3113 0.1711
(0.0237) (0.0238) (0.0558) (0.0910) (0.1035)

# Models differ in the formulation of the solvation term and the hydrogen bonding term. Model A: full volume-based solvation term
and standard 10-12 hydrogen bonding, as in Eq. (1). Model B: apolar ligand atoms only in the solvation term, and standard 10-12
hydrogen bonding. Model C: apolar ligand atoms only in the solvation term, and the standard 10-12 hydrogen less the estimated

average, as in Eq. (2).

P values for the model coefficients, with standard deviations in parentheses.

J. Comput. Chem. 19: 1639-1662 (1998)
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FIGURE 3. Predicted versus observed binding free energies for the calibration set and the docking tests. The solid
line shows a perfect fit, and the dotted lines show one standard deviation above and below this. Hollow diamonds show
the 30 protein—-ligand complexes used in fitting the terms of the binding free energy function. Solid triangles show the
results of the simulated annealing (SA) dockings, solid diamonds show the genetic algorithm (GA) dockings, and the
solid squares show the Lamarckian genetic algorithm (LGA) dockings. Note the outlying biotin—streptavidin complex
(1stp), where it is believed there are significant contributions to the binding free energy due to protein rearrangements.
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J. Med. Chem. 28: 849-857 (1985)
Times cited: 2812 (2018/3/17)

A Computational Procedure for Determining Energetically Favorable Binding Sites
on Biologically Important Macromolecules

P. J. Goodford

The Laboratory of Molecular Biophysics, The Rex Richards Building, University of Oxford, Oxford 0X1 3QU, England.
Received August 3, 1984

The interaction of a probe group with a protein of known structure is computed at sample positions throughout
and around the macromolecule, giving an array of energy values. The probes include water, the methyl group, amine
nitrogen, carboxy oxygen, and hydroxyl. Contour surfaces at appropriate energy levels are calculated for each probe
and displayed by computer graphics together with the protein structure. Contours at negative energy levels delineate
regions of attraction between probe and protein and are found at known ligand binding clefts in particular. The
contours also enable other regions of attraction to be identified and facilitate the interpretation of protein-ligand
energetics. They may, therefore, be of value for drug design.
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Prediction of binding pose could be challenging:
the case of P-glycoprotein with Paclitaxel ( Taxol )




Characteristics of Biological Complex
Problems

The potential energy function is extremely rugged.
The potential energy surface is usually highly asymmetric.

The true global minimum is often surrounded by many
deceptive local minima.

The biological complex problems are mostly in the space of high
dimensionality.
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Genetic Algorithm

1. Start] Generate random population of n chromosomes (suitable
solutions for the problem)

2. Fitness] Evaluate the fitness f(x) of each chromosome x in the
population

3. 'New population] Create a new population by repeating following

steps until the new population is complete

a. [Selection] Select two parent chromosomes from a population
according to their fitness (the better fitness, the bigger chance to
be selected)

b. [Crossover] With a crossover probability cross over the parents to
form new offspring (children). If no crossover was performed,
offspring is the exact copy of parents.

c. [Mutation] With a mutation probability mutate new offspring at
each locus (position in chromosome).

d. [Accepting] Place new offspring in the new population

4. 'Replace] Use new generated population for a further run of the
algorithm

5. Test] If the end condition is satisfied, stop, and return the best
solution in current population

6. Loop] Go to step 2




“Chromosomes” for Flexible-Ligand Docking
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The Evolutionary Gaussians Algorithm

e nindividuals, denoted by s,, s,, ..., 5, are generated. Each s;is a vector
corresponding to a point in the domain of the objective function f. In
order to achieve a scale-free representation, each component of s; is
linearly mapped to the numerical range of [0,1].

e The individuals in each generation of population are then sorted in the
ascending order based on the values of the energy function on evaluated
on these individuals. Lett,, t,, ... t, denote the ordered individuals and
we have f(t,) <fit,) <fit,).

e n Gaussian distributions, denoted by G,, G,, ... G,, are generated before

the new generation of population is created. The center of each

Gaussian distribution is selected randomly and independently from t,, t,,
... t,, where the probability is not uniform but instead follows a discrete
diminishing distribution, n: n-1: ... : 1.

ool oo 6P o, Bk

exp| — o

V27 - o, 207 i n—1

Chang et al. Nucleic Acids Research 33: W233-W238 (2005)
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Figure 3. Number of runs to reach convergence versus the number of energy evaluations consumed (in units of 107): blue, MEDock results; magenta, LGA results
(with parameters tuned); green, LGA results (with default parameters). (a) HIV-1I protease complexed with its inhibitor L.-735,524 (PDB 1D: 1HSH); (b) FKBP-
FK506, an immunophilin-immunosuppressant complex (PDB ID: IFKF); (¢) complex formed between phospholipase A2 and aspirin (PDB ID: 10XR); and
(d) TATA-box binding protein (YTBP) complexed with DNA containing a TATA-box (PDB ID: 1YTB).

Chang et al. Nucleic Acids Research 33: W233-W238 (2005)



A challenging scenario for most searching
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Design of benchmark energy functions
in high dimensional space
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Dependence of searching efficiency on
dimensionality
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The x-axis corresponds to the dimension of the vector space and the y-axis corresponds to the
numbers of simulation runs out of 100 independent runs in which the global minimum were
successfully located by three different algorithms (EGA, LGA, ).

Chang et al. Int J. Art. Intell. Tools 19: 267-280 (2010)



The quest for a perfect scoring function

e The simplest forms of evaluating protein-ligand binding affinity
are empirical scoring functions based on the quantitative
structure-activity relationships (QSAR) approach pioneered by
Hansch, or semi-empirical models with physics-based
energetics.

e The physical-energy-based semi-empirical models have the
advantages of easier rational interpretation of binding modes,
and are more sensitive to protein conformational changes,
which is important when protein dynamics and flexibility are to
be accommodated.



X-Score
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Wang et. al. J. Comput.-Aid. Mol. Des. 16: 11-26 (2006)



Functional form of
AutoDock4 scoring function
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Huey et al., J. of Comput. Chem. 28: 1145-1152 (2007)

Times Cited: 1540 (2018/3/15)



Are all the charge models similar?

 The atomic charges of AutoDock4 were prepared by using the
Gasteiger charge model, whose primary advantages lie in its
simplicity and speed, but the charge determined by this model
could be less accurate.

* For example, the dipole moment of the well-known polar
molecule dimethyl sulfoxide (DMSO) in solution can be
estimated as 4.7D according to its value in vacuum (3.96 D) in
vacuum by experiment. The dipole moments estimated by
different charge models are: 2.96 D (Gasteiger), 4.61 D (RESP)
and 4.57 D (AM1-BCC), respectively.



Is it just to choose a good charge model?

* |If RESP charges for ligands and parm99SB charges for
protein were used with the original AutoDock4 scoring
function, the root mean square of error ( RMSE) for the
LPDB data set will be 7.3 kcal/mol!

3592 J. Med. Chem. 2001, 44, 3592—3598

Ligand—Protein DataBase: Linking Protein—Ligand Complex Structures to
Binding Data

Olivier Roche,” Ryuichi Kiyama,* and Charles L. Brooks, IIT*

Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037

Received November 1, 2000



Ordinary least square (OLS) regression models
with three charge combinations

OLS regression results of AutoDock4 scoring function with different charge models

Combinations Coeflicients of energetic terms
Ligﬂl]d Protein Size HTdﬁsoh‘ Hye.smf H?’rband H’i‘Oi'.S' HTma. RMSE
Gasteiger Gasteiger 187 0.120 0.142 0.121 0.283 0.172 2.542
AMI-BCC Amber99SB 187 0.093 0.125 0.077 0.279 0.167 2.523
RESP Amber99SB 187 0.107 0132 0.090 0.301 0.167 2471

All RMSE values are i kcal/mol.
Calibrations were done with 187 complexes from LPDB.



Proc. Natl. Acad. Sci. USA
Vol. 90, pF. 8547-8551, September 1993
Pharmacology

Molecular cloning, characterization, and localization of a high-affinity
serotonin receptor (5-HT7) activating cAMP formation

(rat/Chinese hamster ovary cells/in situ hybridization)
MARTIAL RUAT*!, ELISABETH TRAIFFORT*, ROB LEURS*, JOEL TARDIVEL-LACOMBE*, JORGE Diazt,
JEAN-MICHEL ARRANG*, AND JEAN-CHARLES SCHWARTZ*

*Unite de Neurobiologie et Pharmacologie (U. 109) de I'Institut National de la Santé et de la Recherche Médicale, Centre Paul Broca, 2ter rue d’Alesia, 75014
Paris, France; and fLaboratoire de Physiologie, Faculte de Pharmacie, Universite Rene Descartes, 75006 Paris, France

Communicated by James Black, June 7, 1993 (received for review February 1, 1993)

K, of metergoline = 63 ¥4 nM Times cited: 579 (2018/3/15)
Tue Journal oF Biotocicar CHEMisTRY Vol. 268, No. 24, lasue of August 25, pp. 1820018204, 1993
RTIn(10)=1.38 kcal/mol for T=300 K Printed tn US4

Molecular Cloning and Expression of a 5-Hydroxytryptamine,
Serotonin Receptor Subtype*

(Received for publication, May 3, 1993, and in revised form, May 26, 1993)

Yong Shent, Frederick J. Monsma, Jr.§, Mark A. Metcalf§, Pedro A. Joset, Mark W. Hamblin§j,
and David R, Sibley§**

From the ¥Molecular Neuropharmacology Section, Experimental Therapeutics Branch, National Institute of Neurological
Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, the §Geriatric Research, Education,

and Clinical Center, Seattle Veterans Affairs Medical Center and the Department of Psychiatry and Behavioral Sciences,
University of Washington, Seattle, Washington 98108, and the 1Department of Pediatrics, Georgetown University School of
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Ordinary least square (OLS) regression
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The problem of OLS regression
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Regression diagnostics versus
robust regression

Regression outliers pose a serious threat to standard
least square analysis.

Regression diagnostics: Use some quantity to pinpoint the
influential points, remove the outliers, and then LS.

Robust regression: Devise estimators not so strongly affected by
outliers. Fit to the majority of data.
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Robust regression
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Building robust AutoDock4 scoring functions
with quantum chemical charge models

(A)

(B)

absolute residual values
=
T

20—

(C)

n
T

absolute residual values
=
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Sorted absolute residuals based on robust regression analysis for the (A) RP and (B) AP and (C) GG
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charge combinations. Red lines are fitted to the residuals between top 25% and 75%.

Coefficients of the robust AutoDock4 scoring functions. The size of the clean set is 147

Coefficients of different energetic terms

Models )
H!ﬁ"esoh' FFESM?‘ H!.??E}ond H!m}'s H{rd\r RMSE

AutoDock4®¢¢ 0.0996 0.0241 0.1806 0.3394 0.1734 1.664
AutoDock4™" 0.0993 0.0491 0.1565 0.3422 0.1736 1.637
AutoDock4™®F 0.0954 0.0661 0.1521 0.3618 0.1698 1.641

All RMSE wvalues are in kcal/mol.

Wang et al., J. Chem. Inf. Model. 51: 2528-2537 (2011)

roeun PO HERPRN EEPRN PR R R B
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Cross-validations

leave-one-out cross-validation (LOO-CV)
leave-group-out cross-validation or Monte Carlo cross-validation

(MCCV)
Scoring LOO-CV MCCV

Fu nctlon

SPRESSS g2 SpRESS g2

L/ Caal 1.732 0.675 1.782 0.657

J.\T1ae o oo /ol 1.707 0.684 1.749 0.670
Tl ae o oYe /ool 1.711 0.683 1.755 0.668

41
Wang et al., J. Chem. Inf. Model. 51: 2528-2537 (2011)



Assessment with large external set of protein-ligand
complexes

Performance of the robust AutoDock4 scoring functions and two other recent scoring
functions tested with the PDBbind data sets

scm‘ing_ﬁulctiou Noain Niast R, R, SD ME
AutoDock4™¢ 147 1427 0.604 0.615 1.61 1.26
AutoDock4™ 147 1427 0550606 0.617 1.60 1.25
AutoDockq™® 147 1427 0.595 0.610 1.62 1.26
original AutoDock4“® 187 1427 0.562 0.594 1.66 1.31
sfc 290m 290 919 0.492 0.555
sfc 229m 229 919 v2005().501 0.558
sfc_frag 130 919 0.525 0.576
PDSE-SVM 278 977 v2005( 517 0.535 1.84 1.42

R,: Pearson’s correlation coefficient; R;: Spearman’s correlation coefficient
SD (standard error) and ME (mean error) are presented in the pKd unit. The binding free
energy in kcal/mol at 298 K was converted to the pKd unit by dividing with the factor of -1.36.

Sotriffer et al., Proteins 73: 395-419 (2008)
Das et al., J. of Chemi. Inf. Model. 50: 298-308 (2010)

Wang et al., J. Chem. Inf. Model. 51: 2528-2537 (2011)



Assessment with a small and diverse external set

Performance of the robust AutoDock4 scoring functions and 17 scoring functions

assessed in Cheng et al. on the 195 set of PDBbind v2007
(Cheng, T.J. et al., J. Chem. Inf. Model.2009, 49, 1079-1093)

147 195 0.654 0.696 1.81
147 195 0.643 0.665 1.83
147 194 0.615 0.634 1.88
187 195 0.615 0.669 1.88
0.649 0.701 1.82
DrugScore®sP 0.589  0.649 1.93
0.622 0.668 1.87
0.529  0.569 2.03
0.518 0.558 2.04
0.522  0.579 2.03
0.477 0.478 2.10
0.479  0.505 2.10
0.555 0.556 2.01
DS::PMF | 0.471  0.482 2.11
0.528  0.553 2.05
by NHA 0.431  0.517 2.15
0.388  0.443 2.20
'DS::Jain @@ 0.339 0.362 2.26
0.329 0.386 2.26
0.235 0.235 2.31
0.238 0.208 2.31 43




Recognizing the “correct” binding poses
from the decoys

The decoys (cyan) and its complex with the native pose (red). (a) Trypsin bound
with 4-phenylbutylamine (PDB ID: 1UTP; K,: 36 mM). (b) HIV-1 protease bound
with N-Aryl-oxazolidinone-5-carboxamides (PDB ID: 210D; K:: 0.8 pM).

Wang, and Lin, Curr. Pharm. Des. 19: 2174 (2013)



Assessment of binding pose prediction with external decoys

ITScore::SE GOLD::ASP
AutoDock4::RAP AutoDock4::RAP
DrugScoreCSD AutoDock4::RRP

AutoDock4::RGG
AutoDock4::original

AutoDock4::RGG
AutoDock4::RRP

MotifScore DS::PLP1
ITScore DrugScorePDB::PairSurf
AutoDock4::GG glide::SP
Cerius2::PLP DS::LigScore2

GOLD::ChemScore
GOLD::GoldScore
X-Scorel.2::HMScore

Cerius2::LigScore
SYBYL::F-Score

PfugScore SYBYL::F-Score
Cerius2::LUDI SYBYL::ChemScore
X-Score DS::Ludi2
AutoDock3 SYBYL::PMF-Score
Cerius2::PMF DS::Jain
SYBYL::G-Score DS::PMF

SYBYL::ChemScore
SYBYL::D-Score

SYBYL::G-Score
SYBYL::D-Score

i T T T T t t t

Ml

B
X

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Comparison of the success rates of AutoDock4 scoring Comparison of the success rates of AutoDock4 scoring

functions and other scoring functions on the decoys set of functions and other scoring functions on the decoys set of

100 complexes (Wang, R.X. et al., J. Med. Chem. 2003, 46, 195 complexes. (Cheng, T.). et al., J. Chem. Inf. Model.
2287-2303) 2009, 49, 1079-1093)

blue: < 1A
red: <2 A
Wang et al., J. Chem. Inf. Model. 51: 2528-2537 (2011) *°



Partial atomic occupancy in 1ajp

HE146.A

\ ™ RHE16.B

4

7a
‘i .‘ARGM B

ARG1/5.A

lajp (grey) has two conformations of side chains on PHE146 and ARG145,
whose atomic occupancy is 0.5. If the alternative conformations that are
similar to 1ajg (green) were chosen, the estimated energy is only -1.87
kcal/mol due to the appeared clash (magenta ligand and PHE146.A).



Poor fitting quality of the model structure
to the electron density map for 1ajp

‘ * The electron density was

presented by Chimera with
the setting of “Level = 0.426".

* Apparently, the side chains of
PHE146 dost not map to the
electron density shown in this
figure.

e A close contact exists
between the ligand and
PHE146.A




Wrong biological assembly for 1tyr?

\QEL.Z.B

: o o
- TAY AT by
T . 2
rF ."nl :'.1_ |
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M\O_%EL.Z.A
= 4

There two models in the biological assembly of 1tyr. The MODEL.1
with A and B chains was chosen in the set of Cheng et al.



Sometimes the water molecule still plays a critical role

A water molecule HOH520 formed a tetra-coordinated hydrogen

bonding network in the complex (2aou) of Histamine N-
methyltransferase. However, neglect of this water resulted in the

wrong ligand pose prediction (in magenta; native pose in cyan) 45



Performance of some scoring functions on
weakly interacting complexes

Scoring Kig 2 1K,2100K;, = 10
functions mM HM HM

AutoDock4RGG Xkl 2.14 2.25
AutoDock4RAP XNkl 2.05 2.12
AutoDock4RRP BH¥/ 2.14 2.27

2.17 1.92 1.90

X-Score XL 2.91 2.29

(RMSE in kcal/mol)

Wang and Lin, Curr Pharm. Des. 19: 2174 (2013)



Class-dependence of robust scoring functions

success rate (%: rmsd =2A)

overall hydrophilic mixed hydrophobic
scoring function (100) (44) (32) (24)
AutoDock4™” 87 89 91 79
AutoDock4®%¢ 86 86 91 79
AutoDock4™™ 84 84 91 75
original AutoDock4“® 79 77 81 79
Cerius2/PLP 76 77 78 71
SYBYL/F-Score 74 75 75 71
Cerius2/LigScore 74 77 75 67
DrugScore ™" 2 73 81 58
Cerius2/LUDI 67 75 66 54
X-Score 66 82 59 46
AutoDock3 62 73 53 54
Cerius2/PMF 52 68 44 33
SYBYL/G-Score 42 55 34 29
SYBYL/ChemScore 35 32 34 42
SYBYL/D-Score 26 23 28 29

*Data were adopted from Wang er al.”” except for AutoDock4 scoring functions.

® Scoring functions are sorted according to the overall success rates.



&

C 1} | ® zinc.docking.org

ZINC"™

Not Authenticated — sign in

Active cart: Temporary Cart (0 items)

( About Search  Subsets Help Social G+ & ( D )
/ 3 . - - - - \
Please consider switching to ZINCi5, which is superior =~ Molecule of the Week = 12414383
to ZINCi12 in most ways. If you prefer ZINCi2 after ™

trying ZINCi5, we would like to know why
@chemgbiology so that we can get you to make the
switch.

Welcome ta ZINC, a free database of commercially-available compounds for virtual

sereening. ZINC contains over 35 million purchasable compounds in ready-to-dock, 3D
formats. ZINC is provided by the Irwin and Shoichet Laboratories in the Department of

Pharmacentical Chemistry at the University of California, San Francisco (UCSF). To cite
ZINC, please reference: Irwin, Sterling, Mysinger, Bolstad and Coleman,

J. Chem. Inf. Model. 2012 DOI: 10.1021/c13001277. The original publication is Irwin and
Shoichet, J. Chem. Inf. Model. 2005;45(1):177-82 PDF, DOL. We thank NIGMS for
financial support (GM71806).

( | Go

Structure/Draw Physical Properties Catalogs & Vendors ZINC IDS Targets Rings Combination

I B ZINC Database

What's NEW? Feedback Likeus
@Aeham ahinlam: Blas RSS




The Extended Relaxed Complex Scheme

» Multivalent drug design in a building-block fashion
e Computational analogue of “SAR by NMR”

Accommodating receptor flexibility by molecular dynamics

Assigning compound molecular properties using rigorous
guantum chemical approaches

Rapid docking using efficient global search algorithms.

Ranking compounds by binding free energy spectra, instead of
single binding free energy.

Molecular dynamics simulations of complexes with top ranked
compounds.

Automatic free energy calculation with the double decoupling
method or with the adaptive umbrella sampling scheme.

Lin et al. . Am. Chem. Soc., 124, 5632 (2002), Lin et al. Biopolymers, 68, 47 (2003)
Amaro et al. J. Comput-Aid Mol. Des, 22, 639 (2008)
Lin, Curr. Top. Med. Chem. 11: 171 (2011), Lin, Biopolymers, 105, 2 (2016)



Density

Binding free energy spectra with
affinity propagation clustering
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Distinguishing Binders from False Positives by Free Energy
Calculations: Fragment Screening Against the Flap Site of HIV

Protease

Nanjie IJensL;-r,"“ﬂ"$ Stefano For]j,§ Peng He,t$ Alex Perryman,§ Lauren Wickstmm," R. S. K. Vijayan,t$
Theresa Tiefenbrunn,® David Stout,® Emilio Gallicchio," Arthur J. Olson,® and Ronald M. Le\f)f*’+’+

"Center for Biophysics & Computational Biology/ICMS, $Depzl_rtn'lent of Chemistry, Temple University, Philadelphia,

Pennsylvanial 9122, United States

*Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United

States

”ch:lugh of Manhattan Community College, The City University of New York, Department of Science, New York, New York 10007,

United States
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B INTRODUCTION

Molecular docking is widely used in rational drug discovery and
structural biology for predicting the most favorable pose and for
estimating the strength of ligand—receptor binding."” In a
typical virtual screening application, a large library of
compounds is docked against a receptor target site to generate
plausible poses ranked by scoring functions. Such functions are
typically designed to have a simple form for computational
efficiency. While docking has matured into a powerful tool for
pharmaceutical research after decades of development,'™” the
accuracy of docking calculations continues to be limited by
these relatively simple scoring functions which lack a complete
treatment of desolvation and receptor reorganization.™
Additionally, entropic factors are generally not captured well
by scoring based on a single structure.”'” As a result, structure-

< ACS Publications  © 2014 American Chemical Society

976

based ligand screening by docking often generates a large
number of false positive hits. As a recent example, Shoichet et
al."' conducted a parallel study of docking and HTS to screen
197861 compounds against cruzain, a thiol protease with a
relatively rigid binding pocket. Among the top 0.1% of the
docking-ranked library, 97.5% of the hits were found to be false
pnsiﬁves.”

Binding free energy methods are based on statistical

mechanics and atomistic simulations and, in principle, can

Special Issue: William L. Jorgensen Festschrift

June 26, 2014
Revised: September 3, 2014
Published: September 5, 2014

Received:

dx.doiorg/10.1021/jp506376z | L Phys Chem. B 2015, 119, 976—988
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Figure 1. Crystal structure of HIV PR (pdb id: 3kfr) with its flap site
occupied by the ligand 1F1 shown in green stick. The active site ligand
is removed from the figure for dlarity.
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Figure 3. Correspondence between the binding free energies
computed using BEDAM and DDM. Unit in kcal/mol. The ligand
CS6 is excluded from the linear regression.

B binder
R R Y BT T I ol = JRT- -
i T o o MM~ o o o
L T B o -+ o ¥ I = I e I s B
T = s I A
C - T T L
M~ 03 uy M~ = ul |

™~ M s o= =

| (=1 1 1

£ £ | £ =

=

f_255820

h

m likely binder

Ligand

424148
f_ 20235
f_1604125

f_1724319

f_3878508

Hm non-binder

f 13213
f_356436

f_34354
f_4049900

f 1431733

f_4770570
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The Statistical-Thermodynamic Basis for Computation of Binding
Affinities: A Critical Review

Michael K. Gilson,* James A. Given,* Bruce L. Bush,* and J. Andrew McCammon?®

*Center for Advanced Research in Biotechnology, National Institute of Standards and Technology, Rockville, Maryland 20850-3479;
*Department of Molecular Design and Diversity, Merck Research Laboratories, Rahway, New Jersey 07065; and *Departments of
Chemistry and Biochemistry, and Pharmacology, University of California at San Diego, La Jolla, California 92093-0365 USA

ABSTRACT Although the statistical thermodynamics of noncovalent binding has been considered in a number of theoretical
papers, few methods of computing binding affinities are derived explicitly from this underlying theory. This has contributed
to uncertainty and controversy in certain areas. This article therefore reviews and extends the connections of some important
computational methods with the underlying statistical thermodynamics. A derivation of the standard free energy of binding
forms the basis of this review. This derivation should be useful in formulating novel computational methods for predicting
binding affinities. It also permits several important points to be established. For example, it is found that the double-
annihilation method of computing binding energy does not yield the standard free energy of binding, but can be modified to
yield this quantity. The derivation aiso makes it possible to define clearly the changes in translational, rotational, configura-
tional, and solvent entropy upon binding. It is argued that molecular mass has a negligible effect upon the standard free
energy of binding for biomolecular systems, and that the cratic entropy defined by Gurney is not a useful concept. In addition,
the use of continuum models of the solvent in binding calculations is reviewed, and a formalism is presented for incorporating
a limited number of solvent molecules explicitly.
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idTarget: Identification of Biomolecular Targets of

Small Chemical Molecules
http://idtarget.rcas.sinica.edu.tw/

idTarget

Welcome to idTarget

A web server for identifying biomolecular targets of small chemical
molecules with a divide-and-conquer docking approach

Identification of biomolecular targets of small chemical molecules is essential for unraveling the
underlying molecular causes of actions. Often, natural products, i.e., compounds discovered from
plants, animals, marine lives or other living organism, exhibit useful pharmaceutical effects, e.g., anti-
inflammatory, anti-cancer, anti-viral effects, yet their molecular mechanisms remain elusive. On the
other hand, many drugs are known to be accompanied with unpleasant adverse effects, but the
molecular targets of such effects are largely unknown. In contrast, there are also some old drugs whose
beneficiary effects are discovered recently, i.e., the anticancer effect of cholesterol-lowering drugs,
statins, and their molecular mechanisms have become an intensive research subject. idTarget is a web
server that can predict possible binding targets of a small chemical molecule via a divide-and-conquer
docking approach, in combination with a recently recalibrated scoring function and a consensus
scoring scheme, where the new scoring function was frained based on 7864 protein-ligand complexes.
In the divide-and-conquer docking calculations, small overlapping grids are adaptively constructed to
constrain the searching space and thereby achieving the convergence of docking results with better
efficiency. idTarget has been shown to be able to reproduce known off-targets of drugs or drug-like
compounds.

Wang et al. Nucleic Acids Research 40: W393-W399 (2012)
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Some proteins could be very large :
the case of P-glycoprotein with Paclitaxel ( Taxol )




Divide-and-Conquer Docking
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Firstly, a box with 10A to each boundary of the receptor was drawn (white). This
big box was subsequently divided into smaller boxes (cyan; the cyan dots are
grid box centers) where the size box was dynamically determined according to
the size of query ligand. The overlapped boxes (red and green dots are the grid
box centers of overlapped boxes) should be taken into count. If a grid box is far
away the receptor (no atom is within 1.42*length of the grid box to the center),
it will be eliminated to reduce the computational cost. Finally, the boxes shown
above are retained.



Example: Off-target screening for the inhibitor in 3MAX

idTargeft
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Result of 1293705965mj

This idTarget job is finished. 10 proteins
were screened. You may download the
result.

PDEBE Energy

5 ligand PDB
§ D fledimel O pguse Link
1 3max -15.01 7.70 Download[[] [ PIVER
2 1hw9 -10.08 6.59 Download[§  CPEVER
3 lajv -8.37 6.94 Download[§]  [PIVER
4 lcim -8:21 6.34 Download [ [ IPENER
5 ltng -8.00 6.20 Download [} [ PEVER
6  1hhi -7.86 6.44 Download [ [ PHVER
7  lmch -7.75 7.19 Download [} [ PAVER
&  lepo -7.13 6.52 Download[[l§ [ PIVER
9  4hmg -6.65 6.07 Download[[] [ PIVER
10 laee 468 5.52 Dawnload[§  [PENER




Virtual screen of large chemical library in
search of new drug candidates
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Virtual screening results in the search of new generation
antibiotics. The hits are ranked according to the predicted
binding affinity.

By using 1056 cores, we are able
to screen the entire over
10,000,000 compound library
within 1 or 2 weeks. It will take
more than 1 year for a typical lab
which owns less than 100 cores.

Such application is especially
useful when time is a critical issue,
e.g., finding effective compounds
against H5N1, H7N9, SARS, and
other infectious disease.

In general, for new drug targets
of any disease without any
known effective therapeutic
agents, virtual screen is an
effective approach to find out
drug candidates.



