
DevOps adoption in
scientific applications:
DisVis and PowerFit cases

Pablo Orviz1, Mikael Trellet2, Alexandre Bonvin2

1Instituto de Física de Cantabria, Santander, Spain
2Utrecht University, Utrecht, The Netherlands

Plan

● Good development practices in scientific applications

● DevOps culture

● DisVis and PowerFit use cases

● Our continuous delivery pipeline

Good practices in
software development

Good development practices in scientific
applications

Why?

Scientific/academic software development has similar goals than

professional/commercial software

● User satisfaction

● Bug-free end-product

● Coding environment structured

● Seamless release of new features

However, until now, and as far as we know, only few scientific software seem to have a

development policy that would professional good development practices.

Good development practices in scientific
applications

When?

Several steps of software development must follow good practices:

● Code writing (dependencies, comments, etc.)

● Code checking (e.g. PEP8)

● Code compilation

● Code testing (performances, results, etc.)

● Code release (e.g. SCM)

● Documentation

Good development practices in scientific
applications

How?

Nowadays, plethora of tools, servers, libraries, help users to maintain a good

software development environment

● Code writing ⇒ Developer documentation

● Code checking ⇒ IDE, style conventions checking tools

● Code compilation ⇒ Automated deployment

● Code testing ⇒ Unit tests, integration tests

● Code release ⇒ Integration with SCM tools

● Documentation ⇒ Comments/docstrings scanning tools

DevOps culture

DevOps culture for software development

What is the DevOps culture?

- Wikipedia: “... a software engineering culture and practice that aims at unifying

software development (Dev) and software operation (Ops). The main

characteristic of the DevOps movement is to strongly advocate automation and

monitoring at all steps of software construction, from integration, testing,

releasing to deployment ...”

https://en.wikipedia.org/wiki/DevOps

Dev Ops

Continuous
Integration/Delivery/Deployment

https://aws.amazon.com/devops/continuous-integration
/

Continuous Integration (CI) Code merged in repository ⇒ Automated builds and code tests performed

Continuous Delivery (CD) CI success ⇒ Deploy in testing environments and performs integration tests

Continuous Deployment (CD’) CD success ⇒ Deploy to production environment (e.g. as a stable release)

DevOps culture for scientific/academic
software development

- Limited number of contributors ⇒ Development/operations often made by the same person/people

- Not all scientists are familiar with best practices in operations

- Reproducibility must be at the core of Science, setting up automated and systematic checking points reduces
chances of results divergence

- Cost of defect solving is reduced if detected early in the software development process

- Allows for faster and more frequent updates, reduces time between algorithms improvement and their
availability for users

- More frequent updates ⇒ smaller changes ⇒ less risk of disruption in operations

- Automating test/build/stage steps allow to focus on the core development, the algorithm(s)

DisVis & PowerFit

DisVis/PowerFit test cases

haddock.science.uu.nl

DisVis - visualising accessible interaction
space

Given 2 interacting structures
and a set of distance constraints

between them, are there any
solutions that satisfy N

constraints?

Van Zundert and Bonvin, BioInformatics, 2015

PowerFit - fitting structures into 3D maps

Van Zundert and Bonvin, AIMS Biophysics, 2015

GRID-enabled web portals

https://milou.science.uu.nl/services/DISVIS

https://milou.science.uu.nl/services/POWERFIT

Architecture

From web form to GPGPU resources

Our continuous delivery
pipeline

DevOps workflow for DisVis/PowerFit

Step-by-step

Setup

● Github repository setup to trigger “webhooks” when certain event occurs (PR, comment on PR,

push, etc.)

● Jenkins server with (1) GitHubPullRequestBuilder (GHPRB) plugin allows to handle webhooks

received from Github and triggers the pipeline, (2) pipeline as set of command-line instructions

Continuous Delivery pipeline (1/2)

1. Fetch the branch to test (source of the Pull Request)

2. Run pep8 (pycodestyle, soon to be flake8) for code style checking of the whole project

3. Build docker images (GPU driver & application) with Ansible roles

4. Send to indigodatacloudapps (hud.docker.com) with proper tag for testing (not production yet)

Step-by-step

Continuous Delivery pipeline (2/2)

 5. Execute app on a running node with GPU capability
 6. Validate results with expected values (integration test)

Length of the pipeline: ~7minutes

Deployment

● Feedback sent to Github PR that triggered the pipeline (using GitHub API)

● If needed/wanted, the PR is merged

● The indigodataclouds docker image gets its tag updated for production

Jenkins server

Failed step in Jenkins server

In a nutshell

This pipeline is highly configurable and we are showcasing a test case that might be more

complete:

● Add unit tests in step 2 (as of today, only code style is checked with pep8)

● Also test multi-CPU results (as of today, only the GPU version is checked because more

error-prone and the one used through docker images in production)

● Implements Continuous Deployment where docker images are production-ready

Our short-term view:

● Apply this pipeline to more projects (PDB-tools, HADDOCK-tools, web servers, etc.)

● Improve the feedback loop when a step is failing (remove docker images when

integration tests are failing, provide pipeline output to developer in GitHub, etc.)

Acknowledgments

CSB group

Alexandre Bonvin
Jorg Schaarschmidt
Adrien Melquiond

INDIGO datacloud

Pablo Orviz

THANK YOU FOR YOUR ATTENTION

Failed step in GitHub

