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Recent Improvements 

• 2006, Deep Belief Networks  

• 2011, Rectified Linear Units 

• 2014, Dropout technique 

• 2015, Batch Normalization 

 

• 2010, THEANO (Acceleration by GPUs, development of software 

frameworks) 

• Cloud access to GPU/TPU hardware 



Open Source Resources 

Deep Learning Tutorials: 

deeplearning.net/tutorial/ 

deeplearning4j.org 

 



 
The Central Dogma of Molecular Biology 

Gene DNA 

mRNA 
Transcription 

Translation 

Folded Functional Protein 

? 

TATGCTGAGGTA… 

(4 letter code) 

AUACGACUCCAU… 

(4 letter code) 

MLLPVTCAYVKGKLQ… 

(20 letter code) 

Folding 



Current state of protein function annotation 

• The function of the vast majority of 

sequences in UniProtKB has not 

been experimentally annotated yet 

 

 

• Standard methods for annotation 

transfers from sequence allow to 

fill in this gap only partially 

 

 

• About 40% of human chains in 

UniProtKB still have no GO term 

assignments 

 

 

• And about 60% lack information 

for the biological process (BP) 

domain 

 

Proteome redundancy 

checks introduced 
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Approach pioneered in Soren Brunak’s lab with ProtFun 

FFPred adds protein intrinsic disorder information to the array of features 

De novo function prediction from sequence 

Known positive cases 

from GOA annotations Safe negative cases 

based on GO hierarchy 

and GOA annotations 

GO term-specific SVM 
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Multi-Class, Multi-Label and Multi-Task Learning 

● Multi-Class: instances are classified in just one of more than two 

classes, like secondary structure prediction; 

● Multi-Label: multiple target labels may be assigned to each instance, 

like protein function prediction; 

● In a structural point of view, Multi-Task methods learn different tasks 

in parallel while using a single shared representation. 

● Using a Multi-Task structure to solve the Multi-Label problem is useful 

because different GO term labels may have wildly different sized 

positive and negative sets for training.  



Multi-Task Deep Neural Networks 



Multitask DNNs Benchmark Results 



Learning Protein Function from Biological 
networks 

• Biological networks underlie all aspects of protein function 

and are a convenient model to represent, analyse and reason 

about protein-protein interactions (functional links) from 

known and predicted data sources.. 

 

• The STRING database includes associations describing: 

•  experimentally detected interactions; 

•  conserved mRNA co-expression; 

•  conserved gene proximity; 

•  co-mention in abstracts and papers; 

•  interactions from curated databases; 

•  gene co-occurrence/co-absence; 

•  gene fusion events. 

 

• These heterogeneous data are combined through naïve 

Bayes statistics 



Word Embedding - Word2Vec (the Skip-Gram model) 

From word embedding to graph embedding 

Graph Embedding - Node2Vec 

• IDEA: Learning context feature for the target word by maximising the probability of neighboring 
word co-occurrence. 

• A shallow neural network architecture feature learning method. 

The white cat is sleeping. (The, white), (The, cat) 

(white, the), (white, cat), (white, is)  

(cat, the), (cat, white), (cat, is), (cat, sleeping)  

The white cat is sleeping. 

The white cat is sleeping. 

• Extension from Word2Vec 
• Using Random-walks to learn the context of network 
       (a node in the network = a word in a sentence) 
• Can be applied to arbitrary graph/network 

Random-walk on a graph 

Vector (the) = (0.36, 0.18, …, 0.07) 

Vector (white) = (0.71, 0.57, …, 0.33) 

Vector (cat) = (0.11, 0.38, …, 0.92) 



Mashup/Node2Vec – learning representations of network topology 

 

• It explores the network through random walks  to learn 

the diffusion states of network or generate sequences of 

nodes. 

 

• It learns a feature space that optimally approximates the 

original node diffusion states or preserves maximum node 

neighborhood information. 

 

• Similar network embedding algorithms have been 

proposed:  Deep-walk [3], Line [4] 

 

[1] Cho, H., Berger, B., & Peng, J. Compact integration of multi-network topology for functional 

analysis of 

      genes. Cell systems . 2016 

[2] Grover, A., & Leskovec, J., node2vec: Scalable feature learning for networks. KDD 2016. 

[3] Perozzi, B., Al-Rfou, R., & Skiena, S., Deepwalk: Online learning of social representations. 

KDD 2014. 

[4] Tang, J. et. al, Line: Large-scale information network embedding. WWW 2015.  

N-dimensional vectors for 

each node (protein) 



Maxout Deep Neural Networks 

• A simple fully-connected three-hidden-layer neural 

network 

• Input Node2Vec generated features into Deep 

Maxout Neural Networks (DMNN) 

• Output multiple GO term annotations for each protein 

• Hidden neurons: 300, 500, 700 or 1000  

• Maxout units: 3 per layer 

• Batch normalisation 

• Dropout - Prob. = 0.5 

[1] Goodfellow, I. J., et al. Maxout networks. arXiv 2013. 

[2] Ioffe, S., & Szegedy, C. Batch normalization: Accelerating deep network training by    

      reducing internal covariate shift. ICML 2015. 

[3] Srivastava, N., et al. Dropout: a simple way to prevent neural networks from 

overfitting. JMLR 2014. Network architecture 
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STRING2GO: Predicting GO terms using DNN functional 
representations and a Support Vector Machine Output Layer 

•   Use Deep Maxout Neural Networks to learn the functional representations but NOT to actually assign the labels 

•  Train the network exactly as before but replace the multi-label output layer with a library of binary SVM classifiers 

 

SVM_1

SVM_2

…

SVM_n

Functional	representation	learning	by	STRING2GO
GO	term	annotations	predicted	
by	SVMs using	the	functional	
representations

Prob	(GO_1)

Prob	(GO_2)

…

Prob	(GO_n)

Functional	

Representations

(0.16,	… 0.88)

(0.30,	… 0.26)

(0.07,	… 0.79)

(0.13,	… 0.32)

(0.03,	… 0.71)

…

(0.57,	… 0.28)

(0.79,	… 0.35)

(0.23,	… 0.40)

(0.41,	… 0.91)

(0.19,	… 0.37)

PPI	network Embedding	
vectors

Deep	Maxout Neural	Networks SVM	library



(A) Median F1 score for predicting 204 BP terms over 10-fold cross validation during training stage 

using different STRING networks to generate network-embedding features and corresponding 

functional representations (B,C) F1 score obtained by different features based on Combinedscore 

network 

Learned latent functional representations greatly outperform raw 

network-embedding features in function prediction 

A

. 

B

. 

C

. 



DNN latent  functional representation offer enhanced functional 

discrimination power on protein test cases 

Colored protein samples labelled by GO:0090150 - annotated (red) or non-annotated 

(green) - using raw Mashup-derived features (A) and corresponding functional 

representations (B) 

(A) (B) 

tsne = t-distributed stochastic neighbor embedding 



The Protein Folding Problem 

A machine learning approach 

23 



A Grand Challenge in Biology for 50 Years: 

The Protein Folding Problem 
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Physics-based approaches have not been successful. 



Protein Folding Timescales 

Victor Muñoz, and Michele Cerminara Biochem. J. 2016;473:2545-2559 

16 CPU years 1 CPU day 



The Protein Folding Problem as a 

Graphical Modelling Problem 
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The contact map can be thought 

of as an adjacency matrix. 

Calculate 

distances from 

coordinates and 

apply a threshold 



Growth of Sequence Family Size in Pfam 
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Release Year 

454 Pyrosequencing 

marketed 

Solexa sequencing 

marketed 





How can having so many sequences change 

the game in protein bioinformatics? 

In most molecular evolution applications a 

common simplifying assumption is made that 

mutations at one site in a protein occur 

independently from mutations occurring at 

other sites 

 

This simplification allows the use of 

Markovian methods e.g. HMMs and profiles 

 

With massive sequence data sets, however, 

we can start to consider coevolutionary or 

epistatic mutational effects 



Correlated mutations in Proteins 

• Given enough sequence data, residues in close proximity can be seen to have a 

tendency to covary, probably to maintain a common microenvironment 

• Changes at one site can be compensated for by a mutation in another position. 

These structural constraints leave a record within the sequence 

• By observing patterns of covarying residues in large Multiple Sequence 

Alignments (MSAs) of homologous protein sequences, we can try to infer this 

structural information 
Adapted from Marks, D. S., Hopf, T. A., & Sander, C. 

(2012). Protein structure prediction from sequence 

variation. Nature biotechnology, 30(11), 1072-1080. 



Contact Correlation Chains 

Observed residue mutations form a chain of 

correlations even though only 3 physical 

contacts are made out of the 6 possible pairs 

• Not all correlations are the result of direct interactions! 

• Direct contact between A and B creates AB correlation 

• Direct contact between A and D creates AD correlation 

• Direct contact between C and D creates CD correlation 

 

• But - this creates apparent correlation between AC, BC, and BD 

despite not being in contact 

• Analogous to causative/transitive effects in gene network 

reconstruction 
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Calculation of Residue Covariation using a 

Sample Covariance Matrix 

VENLVVYNDGADQRAAEYLADRLACPTINNARKFDYSNVKNVYAVGGNKEQYTSYLTTLIAGSTRYTTMQAVLDYIKNLK 

VKNLVVYNNICDQRAAEYLADKLNCPTIWGARPFDYSCVQNVIGVGGKKEQYTSYLKTLVSGNNRYDTMQAVLNYNK--- 

---LVVYNNICDQRAAEYLADKLNCPTIWGSRPFDYSCVENVIGVGGKKEQYTSYLKTLLTGNNRYDTMQVVLNYSK--- 

VENLVVYNDGADQRAAEYLADRLACPTINNARKFDYSNVKNVYAVGGNKEQYTSYLTTLIAGSTRYTTMQAVLDYIKNLK 

---LVVYNNIADARAAEYLADKLNCPTIWGARSFDYSVVENVIGVGGKKEQYTSYLKTLISGNNRYYTMQAVLNYNK--- 

VEHLILVSRGADERAAGYLADYLQAPILYLDRLSNLDSAKKIYVVGGNTKPVDRAI--LISGTDRYGTCQKVLDFIRTGK 

LKNLILVGHGPDERAAGYLADFLKAPVAYLDQADDLNSAQNIYVIGGSVKPLERA--TLISGATRYDTCQKVIDFIHTGK 

MKNLIITNRGADERAAGYLADYLKAPVVLLDQLTDVQGAENIYVVGGSDKPVSSAI--LISGSNRYETCRKVLDICGN-- 

VDYIIQYSNSTDQAIAEIMADRLNCPTINCLRPYAYGQYKTVIAVGEAKNK-SGYTNVEIKGANRKETLDKAIEYCEKL- 

MENIVVYYYPLDQRSAEYVAGELNCTTIYVARTSNYSCVKNIIAVGGRIGKYKEYNITIIAGNGRYDTLKAVVDYIK--- 

 

Gaps are 

considered 

21st amino 

acid type 



Sparse Inverse Covariance Estimation allows 

us to solve the coupling problem 

The Graphical Lasso attempts to find a sparse inverse covariance matrix by minimization of a specific objective 

function. 

 

The expected sparsity of the inverse covariance matrix itself provides a powerful self-contained constraint on the 

obtained solution and thus helps avoid over-fitting. 

 

In general terms, where an inverse covariance estimate is constrained to be sparse, the non-zero terms tend to 

more accurately relate to correct positive correlations in the true inverse covariance matrix. SICE therefore not 

only solves the inversion problem but also gives better answers! 

 

The assumption of sparsity in this application is well justified from observations of contacts in known protein 

structures, where on average only ~3% of all residue pairs are observed to be in direct contact. We actually use this 

observation to tune the regularisation parameter for each case. 
 
 

  



Calculating contact maps using PSICOV 

A large multiple sequence alignment is 

required, >400 sequences 

Calculate covariance matrix 

Shrink matrix 

Sparse 
Inverse 
Covariance 
Estimation 

PSICOV – Protein Sparse Inverse COVariance 

 

Jones DT. et al. (2012) PSICOV: Precise 

structural contact prediction using sparse 

inverse covariance estimation on large multiple 

sequence alignments. Bioinformatics. 28:184-

190. 

Predicted contact map 



Deep Fully Convolutional Nets 

can do even better… 

Fully Convolutional Networks for Semantic Segmentation. 

Long et al. CVPR2015 



DeepCOV: Analysing Residue Covariation using FCNs 

8-10 Padded 

Convolutional layers 

5x5x64 Filters 

ReLu Activation 

BatchNorm 

Input: 21x21 

covariance 

feature 

channels 

Convolutional Maxout Layer 

(dimensionality reduction to 

64 channels) 

Output: 

Contact 

Probability Map 



DeepCOV can predict contacts with fewer 

sequences than previous methods 



Predicting the 3-D structure of proteins by co-

evolution 
• We can produce accurate lists of contacting residues from 

covariation observed in large multiple sequence alignments 

• If we have an efficient way to project this information into 3-D 

space whilst satisfying the physicochemical constraints of protein 

chains then we have everything we need to predict 3-D structure! 

We can solve this using 

constraint satisfaction methods 



Example 1 
Ribosomal Protein L30 – 60 amino acids 

Total calculation time: 10 min on a single CPU 



And another one… 
CASP12 Target T0864 – 246 amino acids 

Total calculation time: 1 hour on a single CPU 
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