SPECTRAL DATABASE APPLICATION FOR COLOR COMPENSATION PROCESS IN PAINTING

M. James Shyu & Yuan-Feng Chang (Chinese Culture University & National Taiwan Normal University)

March 22, 2018@ISGC2018

Outlines

- Background information
 - Objective/Problem definition
 - Color compensation process
- Spectral analysis method
- Spectral property of pigments
- Proposed Spectral Database
- Results
- Summary

Color Compensation Example (Artist: CHEN Chin)

Broken necklace

Color Compensation Example

(Before final touch-up)

Compensation Process

- Analyze original pigment
- Determine the replacing pigment by visible and invisible band
- Make the infill material (base material + replacing pigment)
- Trace the missing area to make the infill
- Inlay the replacing infill to the painting surface
- Remove the facing rayon paper
- Finish touch-up

Objective – in Color Compensation

- Assure the identifiable and reversible in color compensation process
- Utilize the difference of spectral characteristics among pigments
 - Never apply pigment on original art works,
 - Identifiable accurately
 - Removable easily, safely and correctly

Guidelines for Color Compensation

Not only color match, but also Identifiable and reversible

Solution – Spectral Database

Solution – Spectral Database

- Measure spectral reflectance values of the pigment
- Match color in visible band (CIELAB values)
 Identify the difference in non-visible band

Regular visible band

Infrared band

	號數	9	11	13	白
天然				•	
	號數	9	11	13	白
新岩					

Spectral Range

Material Property: Spectral Reflectance

\square R(λ) (400nm to 700nm in 10nm sampling)

Theory of Colorimetry

□ Visible band (400-700 nm)

Light Source (Spectral distribution /Color Temperature)

Object (Reflectance factor) Visual System (Color Matching Functions)

Colorimetry and Color Space

- Measurement Instrument and CIELAB Color Space
- Color matching by CIELAB value (Lightness, Chroma, Hue)

Spectral Characteristics of Pigments

Natural pigment(right) v. s. artificial pigment(left)

Spectral Camera to Capture Images

Natural pigment become black under IR
 Artificial pigments become white under IR

Narrow Band IR images

Image from 850nm to 860nm

Proposed Spectral Database Design

Measure the spectral data Colorimetric data (CIELAB) Narrow Band NIR (spectral reflectance)

Workflow for Proposed Method

- Construct the spectral reflectance
 - Record the CIELAB values (visible)
 - Record the invisible narrow band reflectance values
- Selection criteria
 - Minimum CIELAB color difference
 - Maximum spectral difference (Narrow band)
- Use it as compensation color

Identifiable by spectral imaging

Results:

(Artist: CHEN Chin)

Summary

- An enhanced color compensation method is proposed in selecting replacing pigment
 - Maintain identifiable and reversible
 - Color match in visible band
 - Maximized difference in invisible band

A new application for spectral imaging

□ Thank you for your attention.

可見光與非可見光的交互應用

