Improving biodiversity monitoring through soundscape information retrieval

Yu Tsao, Tzu-Hao Lin

Research Center for Information Technology Innovation, Academia Sinica

Mao-Ning Tuanmu, Joe Chun-Chia Huang, Chia-Yun Lee

Biodiversity Research Center, Academia Sinica

Chiou-Ju Yao National Museum of Natural Science

Outline

- Introduction
 - Soundscape information retrieval (SIR)
 - A critical challenge in SIR
- The multi-layered non-negative matrix factorization (MLNMF) blind source separation (BSS)
- Three applications of using MLNMF BSS
 - Separating soundscape components from long-duration recordings
 - Separating different species of animal vocalizations
 - Searching target signals from noisy recordings
- Conclusion

Outline

- Introduction
 - Soundscape information retrieval (SIR)
 - A critical challenge in SIR
- The multi-layered non-negative matrix factorization (MLNMF) blind source separation (BSS)
- Three applications of using MLNMF BSS
 - Separating soundscape components from long-duration recordings
 - Separating different species of animal vocalizations
 - Searching target signals from noisy recordings
- Conclusion

Soundscape: data science of ecosystem

- **Biophony:** biodiversity
- Geophony: geophysical events and weather conditions
- Anthrophony: impacts of human activities on ecosystem

Large-scale soundscape projects

- Big data: large-scale, long-term monitoring
- Interdisciplinary integration: sensor network, signal processing, ecological research

e sound

One important application of SIR: biodiversity monitoring

 A transmission

 A tran

Searching based on existing information

Lin et al. (2015) PLOS ONE

A critical challenge in soundscape analysis

Precision of acoustical analysis

- Noise interference
- Simultaneous sound sources
- Low precision may lead to a biased ecological interpretation

Source separation can be applied to address the issue

https://www.nps.gov/yose/learn/nature/soundscape.htm

Outline

- Introduction
 - Soundscape information retrieval (SIR)
 - Challenge in soundscape
- The multi-layered non-negative matrix factorization (MLNMF) blind source separation (BSS)
- Three applications of using MLNMF BSS
 - Separating soundscape components from long-duration recordings
 - Separating different species of animal vocalizations
 - Searching target signals from noisy recordings
- Conclusion

Source separation may improve the analysis of soundscape

• Supervised approach

- Model building based on training data
- Powerful but require labeled and clean data

Unsupervised approach (blind source separation)

- Dictionary learning
- Matrix factorization

Image courtesy of music.cs.northwestern.edu

Non-negative matrix factorization (NMF)

- Decomposition of a non-negative matrix (spectrogram)
 - Basis matrix (W) : spectral feature (bricks)
 - Encoding matrix (H) : temporal information (number of bricks)

Self-learning of NMF

- Initialize by random values or prior knowledge
- Update the basis matrix (*W*) and encoding matrix (*H*) through iterations

Update procedure:

$$\begin{split} W_{ia} &\leftarrow W_{ia} \sum_{\mu} \frac{V_{i\mu}}{(WH)_{i\mu}} H_{a\mu} \\ H_{a\mu} &\leftarrow H_{a\mu} \sum_{i} W_{ia} \frac{V_{i\mu}}{(WH)_{i\mu}} \end{split}$$

 $H = \underset{H>0}{\operatorname{argmin}} d(V, WH) + \lambda ||H||_{1}$ fSparsity constraint

Multiple layers of NMF (MLNMF)

- Estimate basis weights by multiple layers of NMF or CNMF
- Learn the encoding information of k sources by the sparse layer

Outline

- Introduction
 - Soundscape information retrieval (SIR)
 - Challenge in soundscape
- The multi-layered non-negative matrix factorization (MLNMF) blind source separation (BSS)
- Three applications of using MLNMF BSS
 - Separating soundscape components from long-duration recordings
 - Separating different species of animal vocalizations
 - Searching target signals from noisy recordings
- Conclusion

SEPARATION OF SOUNDSCAPE COMPONENTS

Visualization of long-duration recordings

Visualization of marine soundscape using a long-term spectrogram

BSS of biophony and anthrophony

- Recordings collected near by the Mailiao industrial harbor, Yunlin County
 - Fish chorus
 - Shipping noise

BSS of biophony and geophony

- Recordings collected near by Waisanding sandbar, Yunlin County
 - Current noise
 - Fish chorus
 - Snapping shrimp sounds

SEPARATION OF SPECIES-SPECIFIC CALLS

Separation of different bat echolocation calls

 Reference calls of 13 bat species, that differed in spectral and temporal features
Mm.
Cb.
Cc.
Sb.
<li

Data collected by Biodiversity Research Center, Academia Sinica, Taiwan

Comparing Supervised NMF SS and MLNMF BSS

Supervised NMF

MLNMF-4L (pre-trained)

Examples of separation result

SEARCHING TARGET SIGNAL IN A NOISY SOUNDSCAPE

Bird calls in a subtropical forest

- Dusky fulvetta (Schoeniparus brunnea)
 - Common species < 2000 m elevations

Data collected by National Museum of Natural Science, Taiwan

Spatial-temporal distribution of bird calls

- MLNMF model perform well in searching the target bird call by using a small training data (unlabeled!)
- Noise types not encountered in the training data can also be separated effectively

Performance of "audio search"

Outline

- Introduction
 - Soundscape information retrieval (SIR)
 - Challenge in soundscape
- The multi-layered non-negative matrix factorization (MLNMF) blind source separation (BSS)
- Three applications of using MLNMF BSS
 - Separating soundscape components from long-duration recordings
 - Separating different species of animal vocalizations
 - Searching target signals from noisy recordings
- Conclusion

Improving biodiversity monitoring using SIR

- Reduce the difficulty of acoustical analysis for ecologists
 - Effective blind source separation
 - Soundscape components on a long-term spectrogram
 - Animal vocalizations with different spectral and temporal characteristics
 - Efficient supervised separation by using a small training data

Future integration of deep learning and SIR

- Unsupervised learning (Deep AE, Variational AE)
 - Improve NMF-based blind source separation
 - Facilitate the collection of labeled data with minimum manpower?

blog.fastforwardlabs.com

AE) decode \Rightarrow $\downarrow w_1^{\top}$ $\downarrow 2000$ $\uparrow w_2^{\top}$ $\downarrow 1000$ $\uparrow w_3^{\top}$ $\downarrow 000$ $\uparrow w_4^{\top}$ $\downarrow 000$ $\downarrow w_2$ $\downarrow 000$ $\downarrow w_1$ $\downarrow 000$ $\downarrow w_1$ $\downarrow 000$ $\downarrow w_2$ $\downarrow 000$ $\downarrow 0000$ $\downarrow 0000$ $\downarrow 0000$ $\downarrow 0000$ $\downarrow 0000$ $\downarrow 000$

Hinton & Salakhutdinov (2006) Science

Decoder

- Supervised learning (CNN, RNN...)
 - Identification of species by learning from a large amount of training data
 - Identification of behavior or individual?

encode →

 $q_{\phi}(z|x)$

Acknowledgement

- Ministry of Science and Technology
 - Independent postdoctoral research fellowship
- Academia Sinica Data Science Seed Grant Program

Welcome for collaboration!

Thank you very much!

