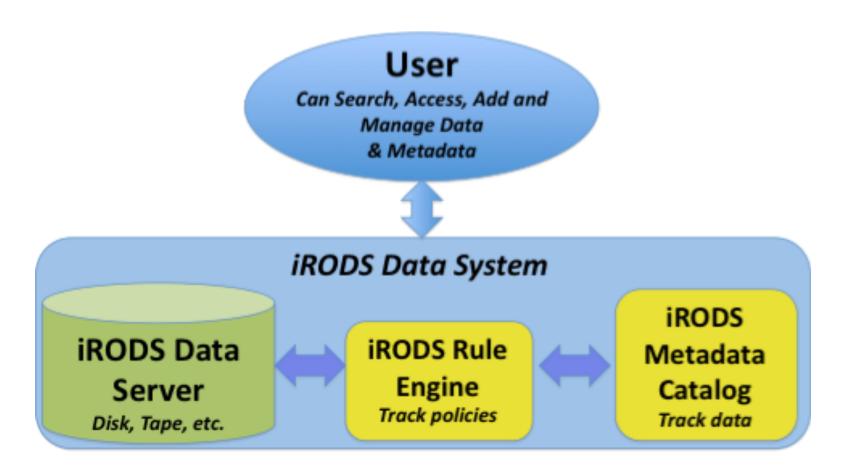


SRM-iRODS Interface Development

WeiLong UENG
Academia Sinica Grid Computing
wlueng@twgrid.org



What is iRODS

- Integrated Rule-Oriented Data-management System
- From SRB (Storage Resource Broker) to **iRODS**
- A community-driven, open source, data grid software solution

iRODS Archiecture

iRODS features

- High-performance network data transfer
- A unified view of disparate data
- Support for a wide range of physical storage
- Easy back up and replication
- Manages metadata
- Controlled access
- Policies, Rules and Micro-services
- Workflows
- Management of large collections

iRODS Applications

Data grids

Share data

- Project level data sharing
- Digital libraries

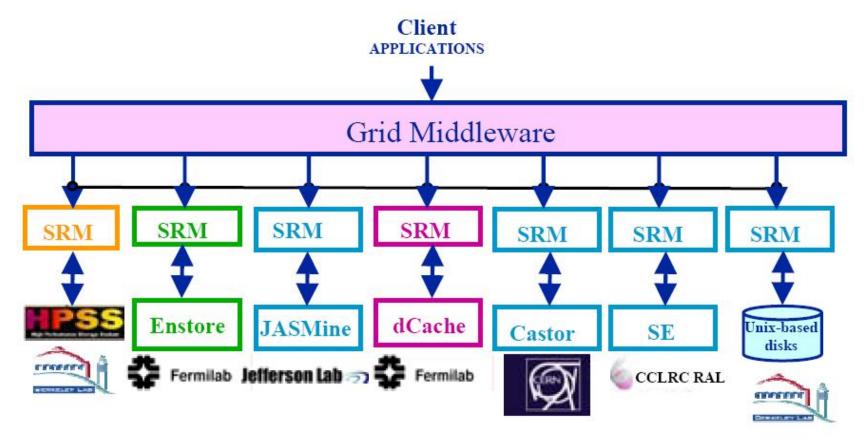
- Publish data
- Specify data context, provide standard services
- Persistent archive

Preserve data

- Build reference collections
- Real-time sensor systems

- Federate data
- Manage real-time data distribution
- Workflow systems

- Analyze data
- Integrate client- & server-side workflows



Why SRM?

- Storage Elements (SE) can use different type of technologies
 - CASTOR, dCache, DPM, BeStMan,...,etc.
 - DRM (Disk Resource Manager)/TRM (Tape Resource Manager) /HRM (Hierarchical Resource Manager)
- Grid middleware needs to access files with an uniform interface
 - Manage storage resources
 - Not a file transfer protocol

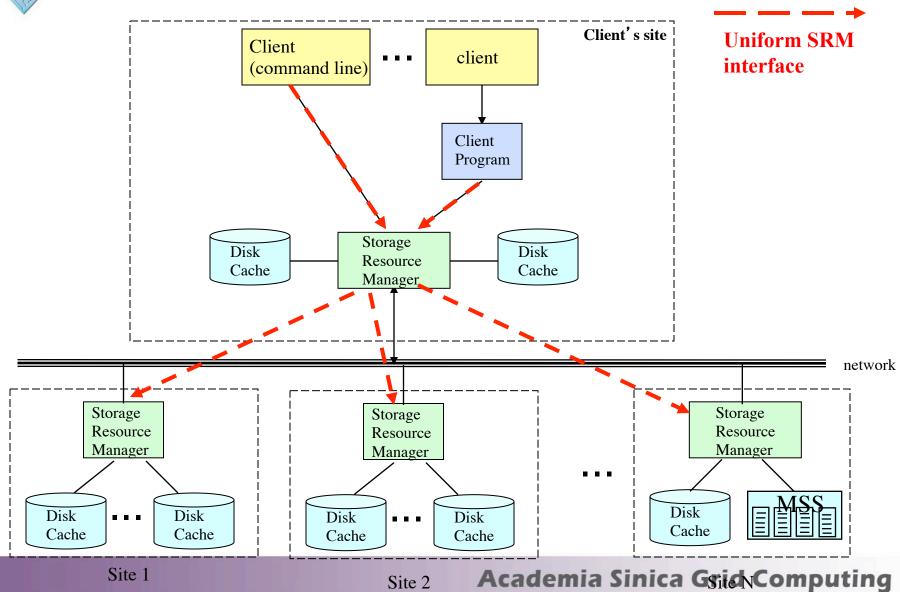
What is SRM?

What is SRM?

- Storage Resource Managers (SRMs) are middleware components
 - whose function is to provide
 - dynamic space allocation
 - file management on shared storage resources on the Grid
 - Different implementations for underlying storage systems are based on the same SRM specification

SRM features

- Provides space management
- Provides an uniform access interface
- Manages DRM/Tape/HRM
- Does not transfer files itself.
- Manage the life time of file



SRMs role in grid

- SRMs role in the data grid architecture
 - Shared storage space allocation & reservation
 - important for data intensive applications
 - Get/put files from/into spaces
 - archived files on mass storage systems
 - File transfers from/to remote sites, file replication
 - Negotiate transfer protocols
 - File and space management with lifetime
 - support non-blocking (asynchronous) requests
 - Directory management
 - Interoperate with other SRMs

Client and Peer-to-Peer Uniform Interface

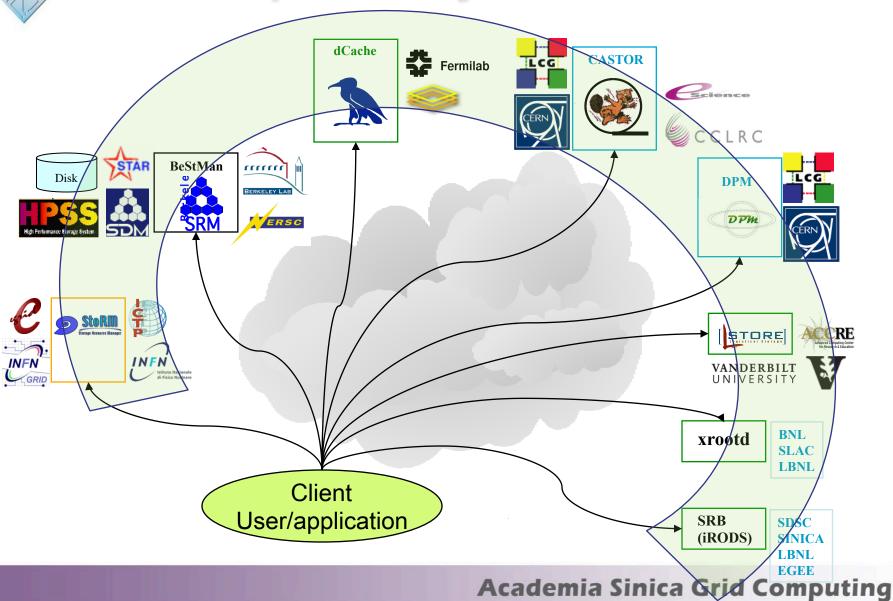
SRM: Main concepts

- Space reservations
- Dynamic space management
- Pinning file in spaces
- Support abstract concept of a file name: Site URL
- Temporary assignment of file names for transfer: Transfer URL
- Directory management and authorization
- Transfer protocol negotiation
- Support for peer to peer request
- Support for asynchronous multi-file requests
- Support abort, suspend, and resume operations
- Non-interference with local policies

Site URL and Transfer URL

- Provide: Site URL (SURL)
 - URL known externally e.g. in Replica Catalogs
 - e.g srm://fct01.grid.sinica.edu.tw:8443/axis/services/srm?/AS/home/ wlueng.ASGC/testFile1.dat
- Get back: Transfer URL (TURL)
 - Path can be different from SURL SRM internal mapping
 - Protocol chosen by SRM based on request protocol preference
 - e.g gsiftp://t-ap20.grid.sinica.edu.tw:2811/AS/home/wlueng.ASGC/ testFile1.dat
- One SURL can have many TURLs
 - Files can be replicated in multiple storage components
 - Files may be in near-line and/or on-line storage
 - In a light-weight SRM (a single file system on disk)
 - SURL may be the same as TURL except protocol
- File sharing is possible
 - Same physical file, but many requests
 - Needs to be managed by SRM implementation

Transfer protocol negotiation


- Negotiation
 - Client provides an ordered list of preferred transfer protocols
 - SRM returns first protocol from the list it supports
 - Example
 - Client provided protocols list: bbftp, gridftp, ftp
 - SRM returns: gridftp
- Advantages
 - Easy to introduce new protocols
 - User controls which transfer protocol to use
- How it is returned?
 - The protocol of the Transfer URL (TURL)
 - Example: gsiftp://t-ap20.grid.sinica.edu.tw:2811/AS/home/ wlueng.ASGC/testFile1.dat

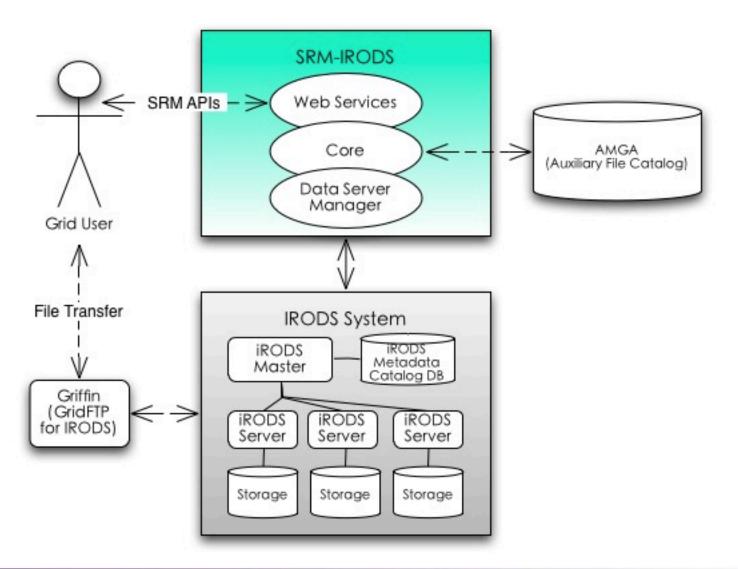
SRM v2.2 Interface

- Data transfer functions to get files into SRM spaces from the client's local system or from other remote storage systems, and to retrieve them
- srmPrepareToGet, srmPrepareToPut, srmBringOnline, srmCopy
- Space management functions to reserve, release, and manage spaces, their types and lifetimes.
 - srmReserveSpace, srmReleaseSpace, srmUpdateSpace, srmGetSpaceTokens
- Lifetime management functions to manage lifetimes of space and files.
 - srmReleaseFiles, srmPutDone, srmExtendFileLifeTime
- Directory management functions to create/remove directories, rename files, remove files and retrieve file information.
 - srmMkdir, srmRmdir, srmMv, srmRm, srmLs
- Request management functions to query status of requests and manage requests
 - srmStatusOf{Get,Put,Copy,BringOnline}Request, srmGetRequestSummary, srmGetRequestTokens, srmAbortRequest, srmAbortFiles, srmSuspendRequest, srmResumeRequest
- Other functions include Discovery and Permission functions
 - srmPing, srmGetTransferProtocols, srmCheckPermission, srmSetPermission, etc.

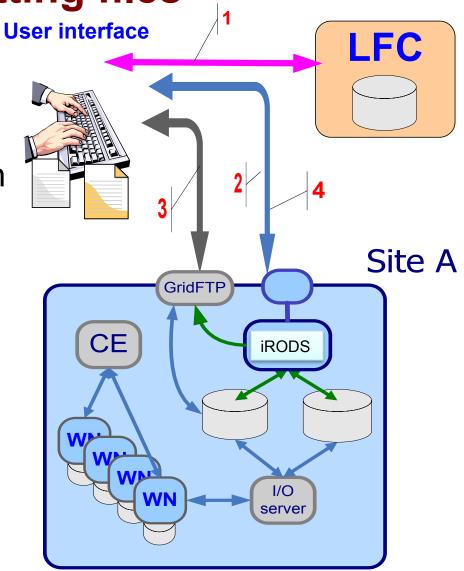
Interoperability in SRM v2.2

When iRODS met SRM

- Make iRODS an archival system of gLite-based e-Infrastructure.
- Support flexible lifetime policy for files
- Impose the VO-based resource policy and security control to iRODS as the Grid infrastructure.

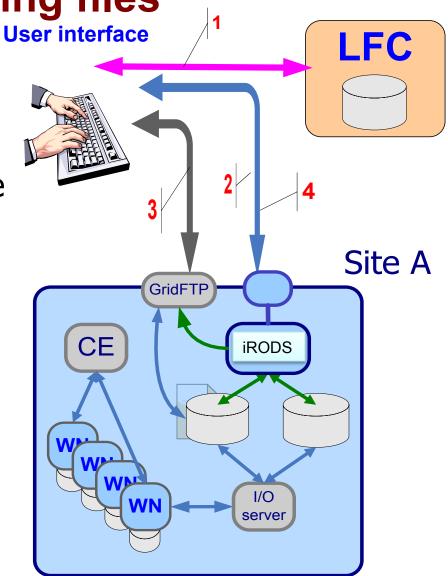


SRM-iRODS implementations


SRM-iRODS Archiecture

Use Case: putting files

- 1. Create a new LFN entry in LFC, return a SURL.
- srmPrepateToPut (SURL)
- 3. Transfer the file to iRODs use GridFTP
- 4. srmPutDone (SURL)

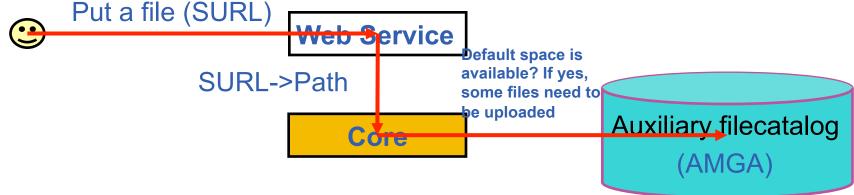


Use Case: getting files

1. Query the file catalog to retrieve the SURL from the LFN.

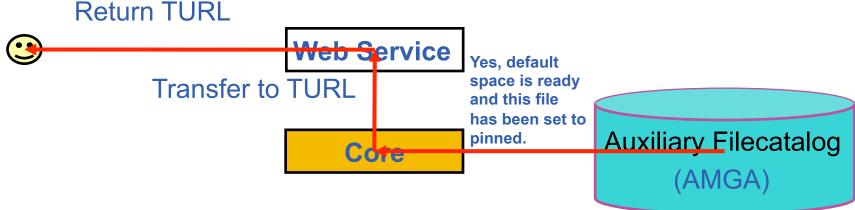
- srmPrepateToGet (SURL)
- 3. Transfer the file (read)
- 4. srmReleaseFile (SURL)

Information in Auxiliary File Catalog


- AMGA server, it stores partial filecatalog, resource and iRODS host information...
 - Users Information
 - Resources Information
 - Files Information
 - Space Metadata
 - Resource States

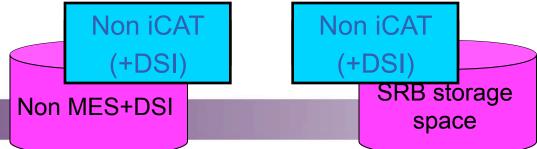
• ...

Architecture Overview



Data server management

iCAT Server (GSI enabled)



Data server management

iCAT Server (GSI enabled)

Upload a file(gridftp)

Web Service

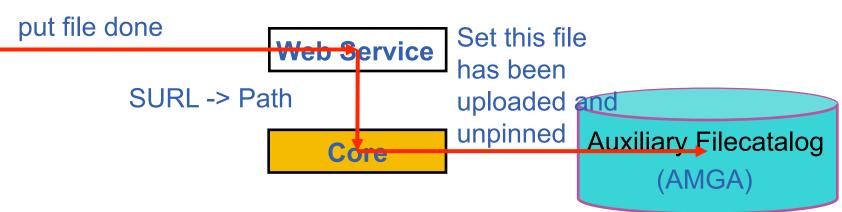
Core

Auxiliary Filecatalog (AMGA)

Data server management

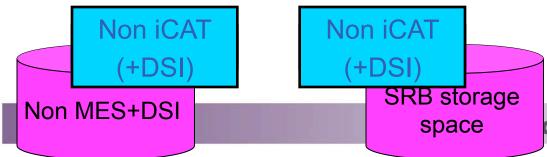
iCAT Server (GSI enabled)

Non iCAT (+DSI)


Non MES+DSI

Non iCAT

(+DSI)


SRB storage space

Data server management

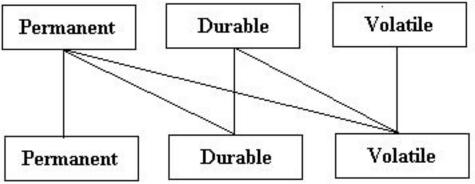
iCAT Server (GSI enabled)

Auxiliary filecatalog (AMGA)

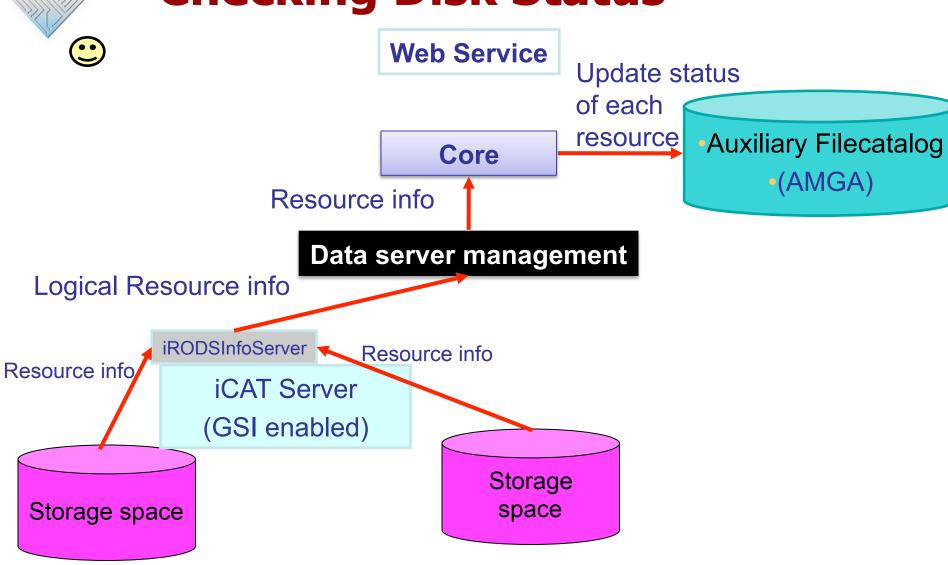
Data server management

iCAT Server (GSI enabled)

Non iCAT
(+DSI)


Non MES+DSI

SRB storage
space


Support Flexible File/Space Types

- SRM system has a caching mechanism and has to take care of SRM issues like file lifetime, space management,...,etc.
 - Permanent space
 - Volatile space
 - Durable space
- Implementation
 - Use AMGA as auxiliary catalog and record all space usage, space type, and some file metadata inside.

Checking Disk Status

Checking Disk Status

- How to get the disk usage of the space?
 - Need to know the free and used space on iRODS server
 - iRODS provide the mechanism to monitor resource usag: SL DISK SPACE
 - We need to know the usage
 - Space management
- Implementation
 - iRODSInfoServer:
 - Deployed on iRODS master server

Progress

Space Management Functions

- srmReserveSpace
- srmReleaseSpace
- srmUpdateSpace
- srmGetSpaceMetaData
- srmChangeSpaceForFiles
- srmGetSpaceTokens
- Permission Functions
 - srmSetPermission
 - srmCheckPermission
 - srmGetPermission
- Directory Functions.
 - srmMkdir
 - srmRmdir
 - srmRm
 - srmLs
 - srmMv

Data Transfer Functions

- srmPrepareToGet
- srmBringOnline
- srmPrepareToPut
- srmCopy
- srmStatusOfCopyRequest
- srmReleaseFiles
- srmPutDone
- srmAbortRequest
- srmSuspendRequest
- srmResumeRequest
- srmGetRequestSummary
- srmGetRequestTokens

Discovery Functions

- srmGetTransferProtocols
- srmPing

SRM API: srmPing

srmPing(): used to verify the responsiveness of the service, to retrieve the SRM version and other internal information.

SRM API: srmPrepareToPut

srmPrepareToPut(): used to write files into the storage. Upon the client's request, SRM prepares a TURL so that client can write data into the TURL.

Lifetime (pinning expiration time) is assigned on the TURL.

- Target space token and SURLs
- Asynchronous operation (typically)
 - Request token returned by SRM service
 - Request status may be checked through srmStatusOfPutRequest() with the returned request token.

SRM API: srmPrepareToGet

srmPrepareToGet(): used to bring files upon the cilent's request. It assigns TURL so that client can access the file.

- Source SURLs
- Asynchronous operation (typically)
 - Request token returned by SRM service
 - Request status may be checked through srmStatusOfGetRequest() with the returned request token.
- Similar function: *srmBringOnline()*, bring files online but do not return TURLs.

SRM API: srmStatusOfPut/ GetRequest

- srmPrepareOfPutRequest(): used to check the status of the previously request srmPrepareToPut. Client can get target TURLs if the status is SRM_SUCCESS.
- srmPrepareOfGetRequest(): used to check the status of the previously request srmPrepareToGet. Client can get source TURLs if the status is SRM SUCCESS.

SRM API: srmPutDone and srmReleaseFiles

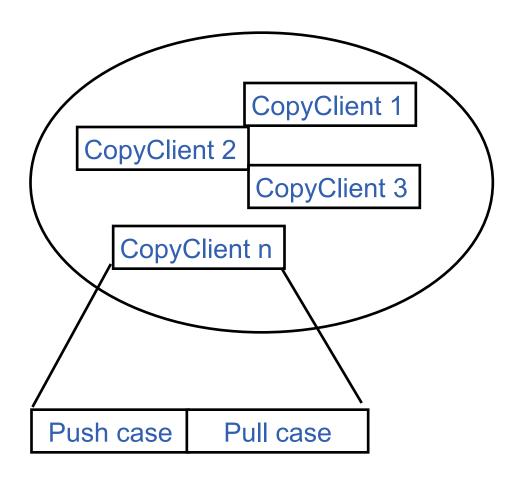
srmPutDone(): used to notify the SRM that the client completed the file transfer(s) to the TURL (s). This should normally follow srmPrepareToPut.

srmReleaseFiles(): used to release pins on the
previously requested "copies" of the SURLs.
This function normally follows
srmPrepareToGet and srmBringOnline
functions.

SRM API: srmReserveSpace and srmGetSpaceMetadata

- srmReserveSpace(): used to reserve a space in advance for the upcoming requests to get some guarantee on the file management.
- srmGetSpaceMetadata(): used to get information of a space. Space token must be provided, and space tokens are returned upon a completion of a space reservation through srmReserveSpace.

Synchronous and Asynchronous


SRM service provides two class of methods:

• Asynchronous methods (non-blocking call)

Synchronous methods (blocking call)

Asynchronous Operations

Progress

- The 1st stage:
 - Core Functions
 - Space Management Functions.
 - Permission Functions.
 - Directory Functions.
 - Data Transfer Functions.
 - Discovery Functions.
 - AMGA DB Schema
 - iRODS Server Manager
 - iRODSInfoServer

Progress (Cont.)

- 2nd stage
 - Internal space management functions
 - Use a thread to recycle expired space
 - Asynchronous operation
 - Space functions
 - Transfer functions

References

- SRM working group:
 - http://sdm.lbl.gov/srm-wg/
- iRODS:
 - https://www.irods.org/
- AMGA:
 - http://amga.web.cern.ch/amga
- Globus:
 - http://www.globus.org
- CoG:
 - http://wiki.cogkit.org/index.php/Main Page
- Axis:
 - http://ws.apache.org/axis/