

THE QUAKE-CATCHER NETWORK THE SENSORS, THE SCIENCE, AND THE OUTREACH

ELIZABETH S. COCHRAN

CORE PROJECT MEMBERS

Co-PI: Elizabeth S. Cochran *UC Riverside*

Educational Coordinator: Jennifer Saltzman Stanford University

Co-PI: Jesse F. Lawrence *Stanford University*

PhD Student Corrie Neighbors UC Riverside

Software Architect: Carl Christensen Stanford University

PhD Student Angela Chung Stanford University

I. INTRODUCTION TO QCN

Low cost seismic network that utilizes: 1. MEMS Sensors

We use triaxial MEMS accelerometers internal to laptops or connected to desktops via USB

Benefits: Very low cost sensing \$0 – laptops \$30-150 – desktops

USB-connected triaxial accelerometer

I. INTRODUCTION TO QCN

Low cost seismic network that utilizes: 2. Distributed Computing

Volunteers donate CPU time to monitor sensors attached to their computer.

We use the Berkeley Open Infrastructure for Network Computing (BOINC) open-source distributed computing platform

Advantages:

- Reduced infrastructure costs (existing networked computers process data and send information to us
- 2) Easy to modify software and push changes to participants

CURRENT NETWORK

2000+ STATIONS GLOBALLY IN 67 COUNTRIES

II. DATA COLLECTION

MEMS Sensor Specifications

Previous Generation JW24F8 – 10 bit sensor (4 mg) MotionNode – 12 bit sensor (1 mg)

Current JW24F14: 14 bit sensor (.24 mg; \$50)

Next Generation (2011-2012) ON-16: 16 bit sensor (6 μg; \$50) ON-24: 24 bit sensor (0.24 μg; \$130)

Shake Table Tests

- Single harmonic
 - Frequencies range 0.2 10 Hz
 - Acceleration range 0.03g 2g
- Earthquake ground motion
 - Scaled Northridge (0.5g and 1g)

M6.7 Northridge scaled to 0.5 g

II. DATA COLLECTION

Location

Initial location based on IP address

More accurate location from participant input into a Google Map interface

Select	Location Name (optional)	Latitude	Longitude	Net (IP) Addr	Set Net Addr	Clear Net Addr
	Home	34.0971731803043	-117.72793114185	76.170.119	Set Current	Clear
	Work	33.9745572764349	-117.32615232467	138.23.128	Set Current	Clear
♥ ₀					Set Current	Clear
					Set Current	Clear
					Set Current	Clear
	Update info					

II. DATA COLLECTION

Timing

http://en.wikipedia.org/wiki/Network_Time_Protocol

Network Time Protocol (NTP): Since 1985

Multi-tier system grounded to GPS Clocks Atomic Clocks Radio Clocks

Peer-to-peer method often provides better than 0.1 second accuracy, often +/- 20 msec.

Frassetto et al. (SRL, 2003)

TRIGGERING ALGORITHMS

• Examined several possible triggering algorithms to:

- Maximize true (earthquake) triggers, minimize false triggers
- Use efficient triggering algorithm for rapid reporting
- Time domain triggers based on STA/LTA are simple and fast to implement

Example 1: M 3.2 Earthquake in San Francisco Region

TRIGGERING ALGORITHMS

• Examined several possible triggering algorithms to:

- Maximize true (earthquake) triggers, minimize false triggers
- Use efficient triggering algorithm for rapid reporting

Time domain triggers based on STA/LTA are simple and fast to implement

Example 2: M 5.0 Earthquake in Los Angeles Region

DATA TRANSFER LATENCY

- Initially transfer minimal data:
 - Time
 - Amplitude on each components
 - Significance
 - Station information (location, sensor type)
- Overall small trigger latency:
 - 3.62 seconds within California
 - 4.29 seconds globally

M7.1 DARFIELD NEW ZEALAND RAMP

Installed ~180 sensors in New Zealand in the week following the 3 Sept 2010 M7.2 earthquake

Collaboration between GNS Science and QCN

Darfield earthquake continues to have a vigorous aftershock sequence and is being recorded by the QCN array.

Source: USGS 2011

Wave Propagation Through Christchurch

New Zealand M4.6, October 15, 2010

REAL-TIME EVENT DETECTION

- 1. Trigger message sent from client station
- 2. Server correlates triggers within:
 - 100 seconds
 - 200 km radius

- 3. Check moveout
 - Is wave traveling at seismic velocities:

 $\Delta T_{ij} \leq \Delta D_{ij} \, / \, V_{\min} + \varepsilon$

4. Issue a detection if the # of triggers > regional threshold

REAL-TIME DETECTION

After a detection is issued we estimate:

- 1. Location:
 - Triggers may be P or S arrivals
 - Starting location is set to the location of the first trigger
 - Grid search of possible locations
 - Iterate to find best location
- 2. Magnitude:
 - Vector sum of PGA: |PGA|
 - Updated amplitude every 1, 2, and 4 seconds
 - Use empirical distance-magnitude relationship (e.g. Campbell, 1981; 1989; Wu et al., 2003; Cua and Heaton, 2007):

$$\left|PGA\right| = \frac{1}{b} \exp \frac{1}{a} \left(M_L - c \ln(R) - d\right)$$

IMPROVING EVENT DETECTION

Initial event characterization:

5 seconds after the origin time 11 triggers

Final event characterization:

257 seconds after the origin time 194 total triggers from 104 stations

Detection Time Distribution

Detection Times Magnitude Distribution

Real-time Detections to date:

- Detection running since mid-September
- All detections in New Zealand no other location currently has either:
 - Dense enough network of stations
 - Earthquakes
- First detections occur within ~9-10 seconds from the earthquake origin time

Event locations and magnitudes are revised using updated amplitude data from 1-4 seconds after the event.

EDUCATION AND OUTREACH

- Increase seismic hazard awareness and earthquake literacy via participation
- Developed interactive software for use in classrooms (QCNLive)
- Creating activities that utilize the sensors and software to teach Earth Science content standards

EDUCATION AND OUTREACH

Lessons and Activities – developed by QCN collaborators (M. Hubenthal, D. Kane, D. Kilb, P. Kim, J. Saltzman, IRIS)

- What is a seismometer?
- Magnitude and intensity
- Exploring three component seismic data with accelerometers
- How hard does the ground shake during an earthquake
- Earthquakes and buildings

SUMMARY

- Current sensor are 14 bit and will be integrating 16 bit and 24 bit soon
- Low-cost MEMS and distributed sensing techniques can provide valuable acceleration data for real-time event detection and characterization
- Creating educational activities to complement the network activities

THE END

Thank you to all of the QCN participants, especially K-12 teachers and classrooms

QCN is funded by:

Project website: qcn.stanford.edu

Any Questions?