International Symposium on Grids & Clouds 2011

The Cloud-Based Sensor Data Warehouse

Wen-Yuan Ku, 辜文元 GIS Center, Feng Chia University, Taiwan 2011/3/25

Outline

Introduction
Cloud-Based Database – HBase
Design of Sensor Data Structure
Experiment
Conclusion

Introduction

The sensors have been widely used in human observation, environment monitoring or biological activities

- Sensor data with time characteristic
- Historic sensor data will require a large amount of data storage

Debris Flow Observation Station

Introduction(cont'd)

- The RDBMS is the most widely used database
- Advantage: easy to manage data (like SQL supported, join...)
- Disadvantage: extremely expensive if huge amount of data storage (PB above) is needed

Cloud-Based Database-HBase

Solution What is HBase

- is the Hadoop database
- ⊙ is a distributed column-oriented
- is a distributed data store that can scale to 1,000s of commodity servers
- integrated into the Hadoop MapReduce framework
- Senefits 🗢
 - High scalability
 - Solution High availability
 - C High performance

Design of Sensor Data Structure

Rowkey design

HBase is Key-Value database
 HBase only has a indexed key : RowKey
 RowKey format:
 <SensorID>_<YYYYMMDDHHmmss>

Ex. SensorID: Geophoneoo1 Time: 2011/03/01 08:00:00

RowKey	Column: "Sensor:X"
"Geophoneoo1_20110301080000"	"124.4"
RowKey	Column: "Sensor:Y"
"Geophoneoo1_20110301080000"	``102.6″
RowKey	Column: "Sensor:Z"
"Geophoneoo1_20110301080000"	"95.1 <i>"</i>

Experiment(1/5)

Experimental Environment

○ AMD Phenom 2.3G X 4, 4G RAM, 3 machines

OUbuntu 9.10

⊖ Hadoop 0.20.1

CHBase 0.20.3

Imported 100 million records by MapReduce

www.gis.fcu.edu.tw

Experiment(3/5)

Source data :13.6GB Spent time: 6hr,3mins,5sec Written 5000 records/sec

Hadoop job_201011121703_0012 on cloud-a

User: hadoop Job Name: SkyEye Job File: hdfs://cloud-a:9000/opt/hadoop-data/mapred/system/job 201011121703 0012/job.xml Job Setup: <u>Successful</u> Status: Succeeded Started at: Thu Nov 18 10:28:40 CST 2010 Finished at: Thu Nov 18 16:31:46 CST 2010 Finished in: 6hrs, 3mins, 5sec Job Cleanup: Successful

Kind	% Complete	Num Tasks	Pending	Running	Complete	Killed	Failed/Killed Task Attempts
map	100.00%	243	0	0	243	0	0/3
reduce	100.00%	0	0	0	0	0	0 / 0

	Counter	Мар	Reduce	Total
Job Counters	Launched map tasks	0	0	246
	Data-local map tasks	0	0	246
FileSystemCounters	HDFS_BYTES_READ	14,632,152,164	0	14,632,152,164
Map-Reduce Framework	Map input records	102,638,374	0	102,638,374
	Spilled Records	0	0	0
	Map input bytes	14,631,529,419	0	14,631,529,419
	Map output records	0	0	0

www.gis.icu.euu.tw

Experiment (4/5)

Reading performance Simulate 50, 100, 200, 300, 400, 500 client Read data randomly for 2 minutes Take average response time ◦ 50 clients : 1.9ms 6 ♀500 clients: 5.6ms 5 avg. response time (ms) 3 2

1

0

50

100

200

300

clients

500

400

Experiment (5/5)

Writing performance Writing 1000 records into HBase Number of Columns 1, 10, 100, 500

	# of columns				
Experiment	1	10	100	500	
Write Columns/Sec	944	949	940	951	
Write Rows/Sec	944	94.9	9.4	1.92	

Conclusion

- Sensor-produced data is calculated in GBs.
- If using distributed column-oriented database, e.g. HBase, data will be stored on <u>separated</u> <u>machines</u> for <u>more efficient I/O</u>
- From our experimental test results, the <u>number</u> of columns in the table will affect performance of data accessing. More columns a data row has, more data access time it will increase

Conclusion(cont'd)

- It will increase the efficiency of database I/O if data can be converted to XML format and save XML data to single column
- We imported 100 million records into Hbase and simulated 50 to 500 clients for accessing the HBase at the same time. The average response time is less than <u>6ms</u>.
- It proves that HBase is very suitable for sensor data warehouse

GIS RESEARCH CENTER , FCU

Thanks for your listening.