by

Outline

Introduction
= Let’s start from the problem
= Aims
= Batch queue system features

Job migration
= |[dea
= Implementation
= Requirements and use cases

Test and results
= Performance improvement

Conclusions
= Benefits

2011/3/31 Federico Calzolari, Silvia Volpe 1

Introduction

What'’s the problem?

= given a computing farm composed by multicore [N] servers
= given a batch queue system: LSF, PBS, SGE
= given mixed serial [mono-core] and parallel [multi-core] jobs

...a stuck situation may occur!

Server 1 Server 2 Server 3 QUEUE

N core

I busy job slot
] free job slot

Job N core

2011/3/31 Federico Calzolari, Silvia Volpe 2

sy

Aims and issues

Aims

= Improve the farm exploitation in terms of running jobs
= Reduce the free job slots

Batch queue system features

= The batch queue system can not modify the queued jobs order
= The scheduler has to respect fairshare and job priorities
= The batch queue system can not move jobs at runtime

2011/3/31 Federico Calzolari, Silvia Volpe 3

by

= lution
Solutions

Possible solutions:

= Cluster partition [serial, parallel]

s CONS: no shared resources benefits, cluster under-exploitation in case of
only serial or parallel jobs

= Job Rearrangement

= PRO: farm full exploitation

2011/3/31 Federico Calzolari, Silvia Volpe 4

by

% The project

The idea

= Set up the batch system behavior in order to fill the minimum number of server,
instead of balance the load between all the available servers

= Rearrange jobs allocation at runtime
at scheduled time interval

considering the free resources available in the farm

The simulator

= FARM simulator

= QUEUE simulator

= JOB MOVER algorithm
= Statistics collector

2011/3/31 Federico Calzolari, Silvia Volpe 5

by

% Requirements and use cases

w4

Requirements

= Batch queue system needs to provide the job migration feature
= Jobs have to be checkpointable, independent, restartable

= Jobs requirements in terms of CPU, RAM, disk and |I/O need to be compliant to
the given acceptance schema:

N core, N/C % {RAM, disk, 1/0O} N being the number of required cores,
and C the single server cores number

Use cases

= Mixed serial [mono-core] and parallel [multi-core] jobs; where parallel jobs are
spread between 2 and C core, C being the server cores number

= Jobs running time: 1 hour to 15 days
= Data acquisition: 1 year
= Queued jobs distribution: random or sequential

2011/3/31 Federico Calzolari, Silvia Volpe 6

by

Problem complexity

How many job slots permutations?

Given J running job, each one requiring 1 to L number of cores, running over a
farm composed by S servers with N cores, how many permutations in the jobs
disposition are possible?

Surely TOO MUCH to be analyzed! It is probably a NP-complete problem.

How to do?

s\We are not searching for the optimum solution, but simply for a solution better
than the current one.

sThe farm simulator, combined with the job mover method, may be used to test
other algorithms, in order to find a new one more efficient than ours.

2011/3/31 Federico Calzolari, Silvia Volpe 7

Algorithm

The chosen algorithm

How to rearrange the jobs:
sreverse sort the servers by busy job slots
=try to fill the most full server with jobs coming from the most free server

Server 1 Server 2 Server 3 Server N

I busy job slot
[] free jobslot

2011/3/31 Federico Calzolari, Silvia Volpe 8

Use case 1

Random
Jobs distribution:
=Cores number 1t0 8
=Running time 1 hour to 15 days
=Queue filling random
in a 128 servers, 8 core farm — 1 year of data acquisition

Randon job [81-88 corel [1h-15d] over 128 servers

9e+06
"core_B88.dat’” u 1:2 — . e .

gespp | [core_08.dat” u 133 —— — modified evolution

76406 k- natural evolution
—- 6e+86
=
o 5e+d6
5
+ 4e+06 | . .
2 Efficiency improvement = 12 %
O 3e+86 [

2e+86 | Job moved / total = 4717 / 10726

1e+06

© 0.439

e

%] 1000 2000 3000 4000 5000 6000 7000 80600
tine [hl

2011/3/31 Federico Calzolari, Silvia Volpe 9

5 2
Use case

Worst [or best] situation [depending on the point of view]

Jobs distribution:

sRepeated sequence of:
[serial mono-core long term jobs, followed by parallel full-core short term jobs]
ina 10 servers, 8 core farm — 1 year of data acquisition

Job sequence: long tine serial, short tine parallel

700000

6600000 [

5660000 [

cpu tine [hl

200000 [

166660 [

2011/3/31

400000 [

300000

Fstuck.dat’ u 132 —— | . _
’stuck.dat” u 133 —— —— modified evolution

natural evolution

Efficiency improvement = 800 %
Job moved / total = 2239/ 17156
0.130

1000 2000 3000 4000 5000 6000 7000 8000
tine [hl

Federico Calzolari, Silvia Volpe 10

Algorithm efficiency

Ny, .7V
Co

Server with 8, 12, 24, 48 cores

The algorithm efficiency with respect to the number of Cores per server
in a 128 servers farm — 1 year of data acquisition

sRandom job sequence [1-N core], [1h-15d]

Core nunber per Server

1.14

fcore_seq.dat’ u 1:2 — |

1,135

1.125

119 | Efficiency improvement = [11-13]%

efficiency inprovenent

1,115

1.11 A . . L L L L L
18 15 20 25 36 35 48 45

Cores per Server [nl

2011/3/31 Federico Calzolari, Silvia Volpe 11

.7V

Algorithm efficiency

Farm with 3, 5, 10, 20, 50, 100 servers

The algorithm efficiency with respect to the number of Servers per farm
with 8 core servers — 1 year of data acquisition

sRandom job sequence [1-8 core], [1h-15d]

1.12
1,115

efficiency inprovenent

1,875

1.687

2011/3/31

1.11
1.1685
1.1
1.895
1.69
1.685

1.68

Server nunber per Farn

ffarn_seq.dat’ u 1:2 — |

The farm efficiency increases
with the increasing of the
server number

Efficiency improvement = [7-12]%
Job moved / total = [10-50]%

depending on farm size and jobs type

18 20 386 48 50 66 76 886 98 166

Servers per Farn [nl

Federico Calzolari, Silvia Volpe 12

by

% Green Computing

w4

A touch of Green Computing

=In case of empty queue, it is possible to use the Job Migration strategy in order to
free resources and switch off the unused hosts and improve the electrical power
efficiency of the farm.

sUsing a remote controlled power supply, it is possible to switch off the unused
hosts, waiting to be switched-on at request.

2011/3/31 Federico Calzolari, Silvia Volpe 13

Conclusions

= A job displacement, executed at runtime in order to stack up the maximum
processes number over single multi core servers, is able to free extra

resources - and consequently host new processes in the computing farm.

= The runtime job rearrangement in a computing farm may provide an
improvement in terms of efficiency of about 7-13 % depending of the use

case.

2011/3/31 Federico Calzolari, Silvia Volpe 14

by

% Acknowledgments and Questions

Thanks for your attention

Please feel free to send questions, [criticisms], suggestions
to the authors

Contact email: Federico Calzolari <federico.calzolari@sns.it>

2011/3/31 Federico Calzolari, Silvia Volpe 15

