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Overview

1. Mass spectrometry brief insights
2. Spectra simulation with quantum computers (targeted analysis)
3. Unknown spectra annotation with LLM-like models (untargeted analysis)
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Mass spectrometry LEGO game
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Real example

• Glucose molecule C6H12O6
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Real example

• Glucose molecule C6H12O6

• Hit by electron beam of 70 eV (energy between UV and X-ray)

https://www.youtube.com/embed/tEk_asS54Xg?autoplay=1&loop=1&playlist=tEk_asS54Xg
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Real example
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Targeted analysis

• There are “suspect(s)” to be present in the sample
• Their mass spectra are not known
• Accurate simulation is required
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Spectra simulation

QCxMS (https://doi.org/10.1002/anie.201300158)
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Ab-initio molecular dynamics

• Newtonian physics in a loop

xi+1 = xi + vi dt F = ∂E/∂x vi+1 = vi + F/m dt

• Potential energy (accurate = quantum chemical)

Ĥ Ψ = E Ψ

• Only the smallest eigenvalue E0 (ground state energy) is required
• Write down Ĥ and just solve the equation . . .
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O(N!) complexity of classical approaches

• Pauli exclusion for fermions:
Ψ(r1, r2) = −Ψ(r2, r1)

yields more complex combinations of per-particle wave functions:

Ψ(r1, r2) =
1√

2

∣∣∣∣ χ1(r1) χ2(r1)
χ1(r2) χ2(r2)

∣∣∣∣
• In general, N! terms for N particles
• 96 electrons in glucose, 96!

.
= 10150
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Map to quantum hardware

• Capture all “quantum magic” in qubits, keeping O(N) size

• Occupancy number Fock space basis |n1, n2, . . . , nM〉 (where ni = 0 or 1)
• Mapping to qubits

• straightforward Jordan-Wigner
• more hardware friendly Bravyi-Kitaev

• Creation â† and annihilation â operators map to QC gates
• Hamiltonian in the 2nd quantization form

Ĥ =
∑

ij

hijâ†i âj +
1
2

∑
ijkl

hijklâ†i â†j âlâk

where hij and hijkl can be computed classically
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where hij and hijkl can be computed classically

ISGC 20205 Mass Spectra Prediction and Analysis: Machine Learning and Quantum Computing Perspectives 12/24



Variational Quantum Eigensolver

• Choose initial parameters θ (classical)
• Prepare trial wavefunction |ψ(θ)〉 (quantum)
• Evaluate E(θ) = 〈Ψ(θ)|H|Ψ(θ)〉 (quantum)
• Change θ slightly and repeat (classical)

• Arriving at E0 ≈ E(θ∗) eventually
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Are we there yet?

• “It’s far far away, Donkey!” (Shrek, 2001)

• Qiskit code to compute energies with VQE X
• o�loads the O(N!) problem to quantum hardware

• QCxMS calls our Qiskit code X
• Fortran→ Python . . .

• Usable guinea pig – boron hydride (BH3) X
• the smallest molecule working with QCxMS
• the biggest molecule for our Qiskit code (on simulator)

• Issues with ∂E/∂x gradients ??
• Still on simulator, reaching quantum hardware is the next step !!
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Untargeted analysis

• Acquired data from real-world sample
• No particular idea what the chemicals can be
• Transform the set of spectra to formulae
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Database search
• Traditional approach
• Spectral databases built over decades

• 12k in 1970, . . . , 900k in 2023

• 109 known “small” molecules, 1060 possibly existing
• Extended methods to retrieve “something similar”
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Machine language translation analogy

• (27.0, 103.91), (28.0, 84.92), (29.0, 120.89), (30.0, 79.93), (31.0, 745.33), (32.0, 86.92), (41.0, 149.86), (42.0, 162.85),
(43.0, 572.48), (44.0, 275.75), (45.0, 190.83), (49.0, 75.93), (55.0, 180.84), (56.0, 188.83), (57.0, 945.15), (58.0, 116.89),
(60.0, 527.52), (61.0, 366.67), (68.0, 56.95), (69.0, 146.87), (71.0, 226.8), (72.0, 121.89), (73.0, 999.0), (74.0, 140.87),
(77.0, 158.86), (85.0, 156.86), (86.0, 211.81), (97.0, 50.95), (101.0, 51.95), (102.0, 61.94), (103.0, 106.9), (113.0, 34.97),
(115.0, 27.97), (119.0, 19.98), (126.0, 19.98), (127.0, 21.98), (131.0, 43.96), (132.0, 34.97), (133.0, 35.97), (144.0,
12.99), (145.0, 18.98), (149.0, 23.98), (163.0, 9.99)

• O1[C@H](CO)[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O[C@@]2(O[C@@H]([C@@H](O) [C@@H]2O)CO)CO

• Good language models can generalize to not-seen-before “sentences”
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Naïve approach

• Pick a suitable language model
• BART encoder-decoder transformer, 354M trainable parameters

• Elaborate on spectra and SMILES tokenization
• Further minor technicalities

• e.g. use the orthogonal “position” input channel for intensities

• Accuracy 28/51%, similarity 0.56/0.72 on 1 and 10 candidates
• cf. extended database search 0% accuracy, 0.45/0.57 similarity

• Not so bad but starting to overfit
• cf. 354M parameters vs. 225k training spectra à 100 peaks
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Pretraining with synthetic data

• Large-scale experimental data are not available
• Formula→ spectrum “translation” is easier

• several models are available, we pick NEIMS and RASSP
• use the same training set to avoid information leak

• Harvested 30M random “standard-annotated-druglike” formulae from ZINC
• Filter to 9.5M according to RASSP restrictions
• Generate 2× 9.5 spectra to pretrain the main model

ISGC 20205 Mass Spectra Prediction and Analysis: Machine Learning and Quantum Computing Perspectives 19/24





Main results
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Prediction example
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Availability

• Preprint https://doi.org/10.48550/arXiv.2502.05114
• Blog https://blog.cerit.io/blog/spectus/
• Demo Binder notebook https://github.com/ljocha/spectus-demo
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Summary

• Mass spectra predicton/analysis seen from two perspectives

• Accurate spectra prediction of non-toy molecules
• (nearly) unfeasible with classical computing
• quantum computers could go further

• Identification of unknown spectra
• gap between database sizes and chemical space
• LLM-based models are promising
• superior accuracy over previous models
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