

Mass Spectra Prediction and Analysis: Machine Learning and Quantum Computing Perspectives

Aleš Křenek¹, Adam Hájek¹, Michael Wagner²

¹Institute of Computer Science, ²IBM Czech Republic ISGC 20205

Overview

- 1. Mass spectrometry brief insights
- 2. Spectra simulation with quantum computers (targeted analysis)
- 3. Unknown spectra annotation with LLM-like models (untargeted analysis)

Mass spectrometry LEGO game

Mass Spectra Prediction and Analysis: Machine Learning and Quantum Computing Perspectives

Mass spectrometry LEGO game

Mass spectrometry LEGO game

Mass Spectra Prediction and Analysis: Machine Learning and Quantum Computing Perspectives

Real example

• Glucose molecule C₆H₁₂O₆

Real example

- Glucose molecule C₆H₁₂O₆
- Hit by electron beam of 70 eV (energy between UV and X-ray)

https://www.youtube.com/embed/tEk_asS54Xg?autoplay=1&loop=1&playlist=tEk_asS54Xg

Real example

Mass Spectra Prediction and Analysis: Machine Learning and Quantum Computing Perspectives

Targeted analysis

- There are "suspect(s)" to be present in the sample
- Their mass spectra are not known
- Accurate simulation is required

Spectra simulation

QCxMS(https://doi.org/10.1002/anie.201300158)

Mass Spectra Prediction and Analysis: Machine Learning and Quantum Computing Perspectives

Ab-initio molecular dynamics

• Newtonian physics in a loop

$$x_{i+1} = x_i + v_i dt$$
 $F = \partial E / \partial x$ $v_{i+1} = v_i + F / m dt$

Ab-initio molecular dynamics

• Newtonian physics in a loop

$$x_{i+1} = x_i + v_i dt$$
 $F = \partial E / \partial x$ $v_{i+1} = v_i + F / m dt$

• Potential energy (accurate = quantum chemical)

$$\hat{H}\Psi = E\Psi$$

Ab-initio molecular dynamics

• Newtonian physics in a loop

$$x_{i+1} = x_i + v_i dt$$
 $F = \partial E / \partial x$ $v_{i+1} = v_i + F / m dt$

• Potential energy (accurate = quantum chemical)

$$\hat{H}\Psi = E\Psi$$

- Only the smallest eigenvalue *E*₀ (ground state energy) is required
- Write down \hat{H} and just solve the equation ...

O(N!) complexity of classical approaches

• Pauli exclusion for fermions:

$$\Psi(r_1,r_2)=-\Psi(r_2,r_1)$$

yields more complex combinations of per-particle wave functions:

$$\Psi(r_1, r_2) = \frac{1}{\sqrt{2}} \begin{vmatrix} \chi_1(r_1) & \chi_2(r_1) \\ \chi_1(r_2) & \chi_2(r_2) \end{vmatrix}$$

- In general, *N*! terms for *N* particles
- 96 electrons in glucose, $96! \doteq 10^{150}$

Map to quantum hardware

• Capture all "quantum magic" in qubits, keeping O(N) size

Map to quantum hardware

- Capture all "quantum magic" in qubits, keeping O(N) size
- Occupancy number Fock space basis $|n_1, n_2, ..., n_M\rangle$ (where $n_i = 0$ or 1)
- Mapping to qubits
 - straightforward Jordan-Wigner
 - more hardware friendly Bravyi-Kitaev

Map to quantum hardware

- Capture all "quantum magic" in qubits, keeping O(N) size
- Occupancy number Fock space basis $|n_1, n_2, ..., n_M\rangle$ (where $n_i = 0$ or 1)
- Mapping to qubits
 - straightforward Jordan-Wigner
 - more hardware friendly Bravyi-Kitaev
- Creation \hat{a}^{\dagger} and annihilation \hat{a} operators map to QC gates
- Hamiltonian in the 2nd quantization form

$$\hat{H} = \sum_{ij} h_{ij} \hat{a}^{\dagger}_i \hat{a}_j + rac{1}{2} \sum_{ijkl} h_{ijkl} \hat{a}^{\dagger}_i \hat{a}^{\dagger}_j \hat{a}_l \hat{a}_k$$

where h_{ij} and h_{ijkl} can be computed classically

Variational Quantum Eigensolver

• Choose initial parameters θ (classical)

coeosc

- Prepare trial wavefunction $|\psi(\theta)\rangle$ (quantum)
- Evaluate $E(\theta) = \langle \Psi(\theta) | H | \Psi(\theta) \rangle$ (quantum)
- Change θ slightly and repeat (classical)
- Arriving at $E_0 \approx E(\theta^*)$ eventually

National Czech

Programme

• "It's far far away, Donkey!" (Shrek, 2001)

- "It's far far away, Donkey!" (Shrek, 2001)
- Qiskit code to compute energies with VQE
 - offloads the O(N!) problem to quantum hardware

- "It's far far away, Donkey!" (Shrek, 2001)
- Qiskit code to compute energies with VQE
 - offloads the O(N!) problem to quantum hardware
- QCxMS calls our Qiskit code
 - Fortran \rightarrow Python ...

- "It's far far away, Donkey!" (Shrek, 2001)
- Qiskit code to compute energies with VQE
 - offloads the O(N!) problem to quantum hardware
- QCxMS calls our Qiskit code
 - Fortran \rightarrow Python ...
- Usable guinea pig boron hydride (BH₃)
 - the smallest molecule working with QCxMS
 - the biggest molecule for our Qiskit code (on simulator)

- "It's far far away, Donkey!" (Shrek, 2001)
- Qiskit code to compute energies with VQE
 - offloads the O(N!) problem to quantum hardware
- QCxMS calls our Qiskit code
 - Fortran \rightarrow Python ...
- Usable guinea pig boron hydride (BH₃)
 - the smallest molecule working with QCxMS
 - the biggest molecule for our Qiskit code (on simulator)
- Issues with $\partial E / \partial x$ gradients ??

- "It's far far away, Donkey!" (Shrek, 2001)
- Qiskit code to compute energies with VQE
 - offloads the O(N!) problem to quantum hardware
- QCxMS calls our Qiskit code
 - Fortran \rightarrow Python ...
- Usable guinea pig boron hydride (BH₃)
 - the smallest molecule working with QCxMS
 - the biggest molecule for our Qiskit code (on simulator)
- Issues with $\partial E / \partial x$ gradients ??
- Still on simulator, reaching quantum hardware is the next step

Untargeted analysis

- Acquired data from real-world sample
- No particular idea what the chemicals can be
- Transform the set of spectra to formulae

Database search

- Traditional approach
- Spectral databases built over decades
 - 12k in 1970, ..., 900k in 2023

Database search

- Traditional approach
- Spectral databases built over decades
 - 12k in 1970, ..., 900k in 2023
- 10⁹ known "small" molecules, 10⁶⁰ possibly existing

Database search

- Traditional approach
- Spectral databases built over decades
 - 12k in 1970, ..., 900k in 2023
- 10⁹ known "small" molecules, 10⁶⁰ possibly existing
- Extended methods to retrieve "something similar"

National Czech Programme

Machine language translation analogy

- (27.0, 103.91), (28.0, 84.92), (29.0, 120.89), (30.0, 79.93), (31.0, 745.33), (32.0, 86.92), (41.0, 149.86), (42.0, 162.85), (43.0, 572.48), (44.0, 275.75), (45.0, 190.83), (49.0, 75.93), (55.0, 180.84), (56.0, 188.83), (57.0, 945.15), (58.0, 116.89), (60.0, 527.52), (61.0, 366.67), (68.0, 56.95), (69.0, 146.87), (71.0, 226.8), (72.0, 121.89), (73.0, 999.0), (74.0, 140.87), (77.0, 158.86), (85.0, 156.86), (86.0, 211.81), (97.0, 50.95), (101.0, 51.95), (102.0, 61.94), (103.0, 106.9), (113.0, 34.97), (115.0, 27.97), (119.0, 19.98), (126.0, 19.98), (127.0, 21.98), (131.0, 43.96), (132.0, 34.97), (133.0, 35.97), (144.0, 12.99), (145.0, 18.98), (149.0, 23.98), (163.0, 9.99)
- 01[C@H](C0)[C@@H](0)[C@H](0)[C@@H](0)[C@H]10[C@@]2(0[C@@H]([C@@H](0) [C@@H]20)C0)C0

National Czech Programme

Machine language translation analogy

- (27.0, 103.91), (28.0, 84.92), (29.0, 120.89), (30.0, 79.93), (31.0, 745.33), (32.0, 86.92), (41.0, 149.86), (42.0, 162.85),
 (43.0, 572.48), (44.0, 275.75), (45.0, 190.83), (49.0, 75.93), (55.0, 180.84), (56.0, 188.83), (57.0, 945.15), (58.0, 116.89),
 (60.0, 527.52), (61.0, 366.67), (68.0, 56.95), (69.0, 146.87), (71.0, 226.8), (72.0, 121.89), (73.0, 999.0), (74.0, 140.87),
 (77.0, 158.86), (85.0, 156.86), (86.0, 211.81), (97.0, 50.95), (101.0, 51.95), (102.0, 61.94), (103.0, 106.9), (113.0, 34.97),
 (115.0, 27.97), (119.0, 19.98), (126.0, 19.98), (127.0, 21.98), (131.0, 43.96), (132.0, 34.97), (133.0, 35.97), (144.0, 12.99), (145.0, 18.98), (149.0, 23.98), (163.0, 9.99)
- 01[C@H](C0)[C@@H](0)[C@H](0)[C@@H](0)[C@H]10[C@@]2(0[C@@H]([C@@H](0) [C@@H]20)C0)C0
- Good language models can generalize to not-seen-before "sentences"

Naïve approach

- Pick a suitable language model
 - BART encoder-decoder transformer, 354M trainable parameters
- Elaborate on spectra and SMILES tokenization
- Further minor technicalities
 - e.g. use the orthogonal "position" input channel for intensities

Naïve approach

- Pick a suitable language model
 - BART encoder-decoder transformer, 354M trainable parameters
- Elaborate on spectra and SMILES tokenization
- Further minor technicalities
 - e.g. use the orthogonal "position" input channel for intensities
- Accuracy 28/51%, similarity 0.56/0.72 on 1 and 10 candidates
 - cf. extended database search 0% accuracy, 0.45/0.57 similarity

Naïve approach

- Pick a suitable language model
 - BART encoder-decoder transformer, 354M trainable parameters
- Elaborate on spectra and SMILES tokenization
- Further minor technicalities
 - e.g. use the orthogonal "position" input channel for intensities
- Accuracy 28/51%, similarity 0.56/0.72 on 1 and 10 candidates
 - cf. extended database search 0% accuracy, 0.45/0.57 similarity
- Not so bad but starting to overfit
 - cf. 354M parameters vs. 225k training spectra à 100 peaks

Pretraining with synthetic data

- Large-scale experimental data are not available
- Formula \rightarrow spectrum "translation" is easier
 - several models are available, we pick NEIMS and RASSP
 - use the same training set to avoid information leak
- Harvested 30M random "standard-annotated-druglike" formulae from ZINC
- Filter to 9.5M according to RASSP restrictions
- Generate 2 \times 9.5 spectra to pretrain the main model

National Czech Programme

Main results

Mass Spectra Prediction and Analysis: Machine Learning and Quantum Computing Perspectives

Prediction example

0.72

Availability

- Preprint https://doi.org/10.48550/arXiv.2502.05114
- Bloghttps://blog.cerit.io/blog/spectus/
- Demo Binder notebook https://github.com/ljocha/spectus-demo

Summary

- Mass spectra predicton/analysis seen from two perspectives
- Accurate spectra prediction of non-toy molecules
 - (nearly) unfeasible with classical computing
 - quantum computers could go further
- Identification of unknown spectra
 - gap between database sizes and chemical space
 - LLM-based models are promising
 - superior accuracy over previous models