

Anomaly Detection for Predictive Maintenance in Data Centers Using Autoencoders

Dr. Marco Lorusso 1

¹National Institute for Nuclear Physics - CNAF Division

19th March 2025

Anomaly Detection for Predictive Maintenance in Data Centers Using Autoencoders

Who am I?

- Phd Student in Physics at University of Bologna, Italy;
- Focused on Software and Computing:
 - Application of Artificial Neural Networks for HEP
 - Optimization of ANNs for low-latency applications;
- Recently started a Post-Doc position at CNAF:
 - Computing division of the Italian Institute for Nuclear Physics (INFN)

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

< 口 > < 同

Autoencoders

- Autoencoder (AE): a NN that is trained to attempt to copy its input to its output;
- Made up of two parts: an Encoder and a Decoder that produces a reconstruction of the input.

- Designed to be unable to learn to copy perfectly but only approximately, prioritizing useful properties of the data;
 - Usually done by constraining the latent space to have a smaller dimension than the input (Undercomplete);

(日)

 Widely used for dimensionality reduction, feature learning and generative models.

Making them Variational

 AE that aims to learn a compact, continuous latent representation of data;

- Goal: learn encoder and decoder parameters such that new samples can be generated from the learned latent space through the decoder;
- VAE uses a probabilistic encoder that maps the input to a probability distribution over the latent space.

AI Masterclass

- This is just a niche example of the vast zoo of AI models;
- During this conference a Masterclass on AI is being held:
 - Hope you didn't miss it if you want to know what there is behind AI models and how they work!
- Today: Wednesday 19/03 (or 03/19);
- From 11:00 to 17:30 (11AM to 5:30PM).
- Lecturer: Prof. Daniele Bonacorsi (Full Professor @ University of Bologna;
 - Tutors: Dr. Marco Lorusso, Dr. Luca Giommi and Dr. Simone Gasperini.

Coffee Break

BHSS, Academia Sinica

(日) (同) (三) (三)

Anomaly Detection with AEs

Auto-Encoders (AEs) are neural network models trained to reconstruct their inputs:

- ▶ The encoder compress the input into a smaller latent space.
- ▶ The **decoder reconstructs** from the compressed representation.

- Idea: background samples are associated to low anomaly scores;
- Anomalies can be either erroneous, rare or interesting events;
- This approach is self-supervised, requiring only background samples in the data;

< 口 > < 同

No assumption on the type of signal.

INEN - CNAE

AD in HEP

Dr. Marco Lorusso

- ► Machine Learning strongly considered to process the increased amount of data in next phases of LHC → major focus on Artificial Neural Networks;
- An important candidate for using ML is the research for Beyond Standard Model events:
 - Networks like Autoencoders are unbiased algorithm which can select events based on their degree of abnormality, without theoretical priors;
- Trigger latency and energy constraints are quite unique → need for specific software development and strategies to deploy ANN efficiently on the hardware available on-site, like FPGAs.
- Need to optimize and compress these kind of algorithm to make them suitable for trigger environments.
- Topic of my PhD thesis and of a talk tomorrow at 2PM.

INEN - CNAE

イロト イヨト イヨト

Moving to Datacenters

- The idea is to use Autoencoders to perform Anomaly Detection using sensor data from a datacenter:
 - This could lead to a system able to pick up a malfunction before major or even any disruption of the service
- Particularly interesting in Bologna after the construction of the Tecnopolo!

< □ > < □ > < □ > < □ > < □ > < □ >

э

Bologna's Tecnopolo

- It houses Leonardo, the 9th SuperComputer in the top 500 (Nov. 2024), with 241.20 PFlop/s!;
- But also the new and upgraded CNAF Datacenter.

Dr. Marco Lorusso

Image: A math the second se

The Use Case

- Service under study is WebDAV: it enables to access and manage files remotely via HTTP;
- To maintain seamless operation:
 - → essential to detect anomalies indicating potential service disruptions.

Bucket Name	Data frequency	Retention Policy
one_week	5 minutes	1 week
one_month	15 minutes	1 month
six_month	2 hours	6 months
all_data	3 hours	inf

- ML to analyze system metrics—such as CPU usage, memory consumption, and network traffic—using a Time Series dataset;
- Data extracted from an InfluxDB v2 database

< 口 > < 同

INEN - CNAE

Metrics Available

 General CPU utilization metrics;

 IO operations metrics;

 Used/Free/Swap memory metrics; cpu.ctxt cpu.total.system cpu.total.user cpu.procs_blocked cpu.total.nice cpu.total.idle cpu.total.iowait cpu.procs_running

iostat.avg-c user

> iostat.avg-cpu.pctiowait

memory.free memory.used WOBuffersCache

memory.free WOBuffersCache

・

Dr. Marco Lorusso

Anomaly Detection for Predictive Maintenance in Data Centers Using Autoencoders

Identifying Anomalies

storm.webdav.TPC.	storm.webdav.storm.http.	storm.webdav.jvm.threads.
.pull.error-count.count .pull.ok-count.count .pull.throughput-bytes-per- sec.count .pull.throughput-bytes-per- sec.max .pull.throughput-bytes-per-sec.p99	.handler.4xx-responses.m1_rate .handler.5xx-responses.m1_rate .handler.active-dispatches.count .handler.dispatches.m1_rate .thread-pool.size.value .thread-pool.utilization.value	.runnable.count.value .blocked.count.value .count.value

- Searched for 'None' values in the dataset as Anomalies;
- Three main families of metrics with holes in the data:
 - Two dealing with comunication with the machines;
 - One concerning JVM metrics.
- In the 4 machines studied (one_month bucket) these sum up to:
 - 30 anomalies;
 - 36 anomalies;
 - 34 anomalies;
 - 42 anomalies.

The Neural Network

To test the idea, an AE was built:

- Using Long-Short Term Memory layers to deal with Timeseries;
- Dropouts and Normalization Layers to increase generalization;
- The Model infers a reconstruction of the input series;
- RMSE as Loss function to measure the difference between input and output

• In total \approx 42000 trainable parameters.

・ロト ・伺 ト ・ ヨト ・ ヨト

INFN - CNAF

Anomaly Detection Results

- Model trained using timeseries w/o anomalies coming from 4 different machines;
- Test series with both anomalies and normal entries;
- Acceptable TPR;
- But still too sensible to False positives.

	AUC	TPR @ FPR = 0.2
xs-101	81.8%	0.45
xs-102	83.0%	0.80
xs-103	89.0%	0.88
xs-104	92.9%	0.95

Image: A matrix and a matrix

Challenges in Anomaly Detection with ML for Data Centers

Limited Availability of Anomaly Data

Data centers already available to the public should have few anomalies.

Insufficient Retained Data

- With one_week or one_month retention policy there is not enough data to build a complex model with a good false positive rate (FPR);
- Still valid for six months of data or more, compounded by the two or more hours timestep that is too sparse to be useful in online applications;

Need for a Realistic Machine Learning Approach

- Handling denser data could be very challenging but maybe necessary for realistic ML applications;
- Suggested solution: Create a temporary database for training purposes.

< □ > < □ > < □ > < □ > < □ > < □ >

Going from Datacenters to ML development

- Big computing infrastructures use very complex and useful database management systems for handling sensor data;
- However making data coming from these systems usable with ML frameworks (e.g. TensorFlow) is not so straightforward.

Dr. Marco Lorusso	INFN - CNAF	
Anomaly Detection for Predictive Maintenance in Data Centers Using Autoencoders	15/17	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Conclusions

Key Takeaways:

- Autoencoders provide a powerful tool for unsupervised anomaly detection;
- Can be applied in High-Energy Physics (HEP) and Data Centers to detect rare or erroneous events;
- Still a sub-optimal false positives rate, due to data scarcity.

Future Directions:

- Bridge the gap between ML developers and dense highly structured data;
- Develop strategies for handling denser, high-frequency data for more intense ML development;
- Improve model robustness by incorporating additional feature engineering;
- Create more complex and generalized NNs (like VAEs to be able to generate other samples).

イロト イポト イヨト イヨト

Thank you

Dr. Marco Lorusso Anomaly Detection for Predictive Maintenance in Data Centers Using Autoencoders ▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● の Q ()

INFN - CNAF 17/17