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Introduction

» Machine Learning strongly considered to process the increased amount
of data in next phases of LHC — major focus on Artificial Neural
Networks;

» Trigger latency and energy constraints are quite unique — need for
specific software development and strategies to deploy ANN efficiently
on the hardware available on-site, like FPGAs.

» An important candidate for using ML for triggering is the research for
Beyond Standard Model events:

e Networks like Autoencoders are unbiased algorithm which can select events
based on their degree of abnormality, without theoretical priors;

» Need to optimize and compress these kind of algorithm to make them
suitable for trigger environments.
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Anomaly Detection with AEs

Auto-Encoders (AEs) are neural network models trained to reconstruct their
inputs:
» The encoder compress the input into a smaller latent space.

» The decoder reconstructs from the compressed representation.

input reconstruction

B - '

bottleneck

» |dea: background samples are associated to low anomaly scores;
» Anomalies can be either erroneous, rare or interesting events;

» This approach is self-supervised, requiring only background samples in
the data;

» No assumption on the type of signal.
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Knowledge Distillation

Teacher Model

o

Source: Knowledge Distillation: A Survey (arXiv:2006.05525)

» Knowledge distillation trains a smaller "student” neural network to
emulate the behavior of a larger "teacher” network. The teacher network,
usually more complex and accurate, guides the student network to learn
from its knowledge, enhancing generalization;

» The student network can match the teacher’s performance with fewer
parameters — Valuable for resource-constrained environments or where
computational efficiency is vital.
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Knowledge Distillation - Different Knowledge

» Response-Based Knowledge:
directly mimic the final prediction
of the teacher model;

» Feature-Based Knowledge: both
the output of the last layer and
the output of intermediate are
used as the knowledge to supervise
the training of the student model;

» Relation-Based Knowledge: the
student learns the relations — [.ui.,l [mwmmWM_I
between intermediate _ _
representations of data between
|ayers Of the teacher_ Source: Knowledge Distillation: A Survey (arXiv:2006.05525)
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Knowledge Distillation - Different Learning Schemes

» Offline Distillation: the knowledge
is transferred from a pre-trained Offline Distillation o
teacher model into a student >
model;

» Online Distillation (co-training):
both the teacher model and the Online Distillation
student model are updated Leachen »
simultaneously, and the whole
knowledge distillation framework is
end-to-end trainable;

Lindent

Self-Distillation

» Self-Distillation the same

Bl Freained
networks are used for the te_acher Teacher/Student [0 1o e tratnca
and the student models. This can
be regarded as a special case of
online distillation. Source: Knowledge Distillation: A Survey (arXiv:2006.05525)
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The AD task

» Dataset: a typical p-p collision dataset pre-filtered requiring an electron or
a muon with a pr > 23GeV and a || < 3 (electron) and |n| < 2.1 (muon);
» Injected signals:
e Leptoquark (LQ) with a mass of 80 GeV, decaying to a b quark and a 7
lepton;
e Neutral scalar boson (A) with a mass of 50 GeV, decaying to two off-shell Z
bosons, each forced to decay to two leptons: A — 4
e Scalar boson with a mass of 60 GeV, decaying to two tau leptons: hg — 77
e A charged scalar boson with a mass of 60 GeV, decaying to a tau lepton
and a neutrino: hy — TV

» Knowledge Distillation used to create a smaller network to fit in e.g.
FPGAs which behaves similarly to the beefier network;

» The student should be optimized to learn from the teacher as much as
possible, keeping in mind the hardware restrictions of deploying NN on
FPGAs.
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Student Optimization - What should we do first?

» 2 "dimensions” for optimizing a NN for FPGAs: architecture and
quantization;

> quantization & converting all parameters (e.g. weights) to fixed-point
numbers, better handled by FPGAs

» Is there a difference in searching for the best candidate with or without
the quantization process in mind?

Strategy: first a simple hyperparameter search with no quantisation; then we
repeat the hyperparameter search + quantisation search.
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CoSearch v. PhaseSearch
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CoSearch Architecture and Quantization parameter space searched
simultaneously;

PhaseSearch Quantization parameter space searched after optimal
Architecture;

Results are consistent but CoSearch more peaked to lower values.
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AD performance - Best student

ense Dense(16)

» Hidden layers:
e 64 nodes, 16 bits per w/b (6 bits integer part);

» 57 input nodes; e 32 nodes, 16 bits per w/b (6 bits integer part);
> ~ 10% teacher e 8 nodes, 16 bits per w/b (6 bits integer part);
model parameters e 8 nodes, 8 bits per w/b (2 bits integer part);

e 16 nodes, 16 bits per w/b (6 bits integer part);
8 nodes, 16 bits per w/b (6 bits integer part);
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Testing Co-training Distillation

Co-training distillation sees the teacher and student training at the same time.
The training step of this procedure sees multiple terms:
» The teacher objective is still to perform the task as best as possible;
» The student tries to emulate the teacher even in the learning procedure;
» In this way the pace of "emulating” and learning the task can be tuned;
» An element of noise can be added right in the objective function to avoid
overfitting.
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Conclusions

» Knowledge Distillation was tested as a way to optimize an AE for search
of physics events not explained by the SM;

» In the comparison between the CoSearch and PhaseSearch quantization
approaches, the former offers a set of students more peaked around the
best one. This suggests that this procedure should yield better results
faster then the latter.

» The co-training technique for knowledge distillation was also tested. The
first results see an overall worse performance in the anomaly detection
task w.r.t. post-training distillation;
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Thank you
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Best Postsearch student (Validation set)
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Losses’ MSE distribution Cosearch

MSE Distribution COQuant search Leptoquark

250

Mean: 1.03102

001 002 003 004 005
MSE

MSE Distribution COQuant search A 04f

Std: 31.74274
Median: 0.01647

Dr. Marco Lorusso
Optimization of ML-Based BSM triggering with Knowledge Distillation for FPGA implementation

Mean: 1.30682
Std: 27.54760
ian: 0.3295

6

MSE Distribution COQuant search h*-tv

0.000

1 Mean: 1.10883
1 Std: 31.36289
Median: 0.03971

0025 0050 0075 0100 0125 0150 0175 0.200

MSE Distribution COQuant search h®»tt

Mean: 0.74189
Std: 21.99337
Median: 0.02445




Losses’ MSE distribution Post search

MSE Distribution POSTQuant search Leptoquark
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Best Co-quantization student ROCs
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Hardware footprint after Synthesis

Name BRAM_18KDSP48E  FF
DsP - - -
Expression - - 0 120
FIFO - - - -
Instance - 850 24674214625
Memory - - - -
Multiplexer - - - 267
Register - - 1924
Total (1] 850 26598215012
Available 2688 59521743360871680
Available SLR 1344 2976 871680435840
Utilization (%) 0 14 il 24
Utilization SLR (%) 1] 28 3 49

Latency (cycles)Latency (absolute)
min | max min max
100 100 0.500us 0.500us
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LUT URAM

640
320

Target platform: Alveo
U50 for testing purposes;
Data only about the NN
kernel;

The NN sits comfortably
in a single "slice” (SLR) of
the board;

With further optimization
these figures could be
reduced even more;

The same can be said for
the latency (500 ns).
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