

Optimization of ML-Based BSM triggering with Knowledge Distillation for FPGA implementation

Dr. Marco Lorusso ¹

¹National Institute for Nuclear Physics - CNAF Division

20th March 2025

Dr. Marco Lorusso

Introduction

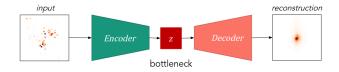
Dr. Marco Lorusso

- ► Machine Learning strongly considered to process the increased amount of data in next phases of LHC → major focus on Artificial Neural Networks;
- Trigger latency and energy constraints are quite unique → need for specific software development and strategies to deploy ANN efficiently on the hardware available on-site, like FPGAs.
- An important candidate for using ML for triggering is the research for Beyond Standard Model events:
 - Networks like Autoencoders are unbiased algorithm which can select events based on their degree of abnormality, without theoretical priors;
- Need to optimize and compress these kind of algorithm to make them suitable for trigger environments.

Anomaly Detection with AEs

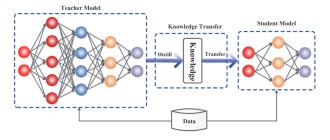
Auto-Encoders (AEs) are neural network models trained to reconstruct their inputs:

- The encoder compress the input into a smaller latent space.
- ▶ The **decoder reconstructs** from the compressed representation.



- Idea: background samples are associated to low anomaly scores;
- Anomalies can be either erroneous, rare or interesting events;
- This approach is self-supervised, requiring only background samples in the data;
- **No assumption** on the type of signal.

Knowledge Distillation

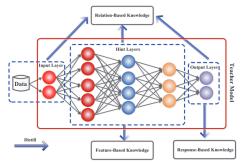


Source: Knowledge Distillation: A Survey (arXiv:2006.05525)

- Knowledge distillation trains a smaller "student" neural network to emulate the behavior of a larger "teacher" network. The teacher network, usually more complex and accurate, guides the student network to learn from its knowledge, enhancing generalization;

Knowledge Distillation - Different Knowledge

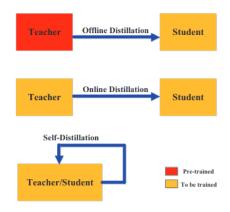
- Response-Based Knowledge: directly mimic the final prediction of the teacher model;
- Feature-Based Knowledge: both the output of the last layer and the output of intermediate are used as the knowledge to supervise the training of the student model;
- Relation-Based Knowledge: the student learns the relations between intermediate representations of data between layers of the teacher.



Source: Knowledge Distillation: A Survey (arXiv:2006.05525)

Knowledge Distillation - Different Learning Schemes

- Offline Distillation: the knowledge is transferred from a pre-trained teacher model into a student model;
- Online Distillation (co-training): both the teacher model and the student model are updated simultaneously, and the whole knowledge distillation framework is end-to-end trainable;
- Self-Distillation the same networks are used for the teacher and the student models. This can be regarded as a special case of online distillation.



Source: Knowledge Distillation: A Survey (arXiv:2006.05525)

Image: A matrix and a matrix

▶ ▲ ∃ ▶ ∃ ∃ ≤ 𝒫 Q ∩

The AD task

Dr. Marco Lorusso

▶ Dataset: a typical p-p collision dataset pre-filtered requiring an electron or a muon with a $p_T > 23$ GeV and a $|\eta| < 3$ (electron) and $|\eta| < 2.1$ (muon);

Injected signals:

- Leptoquark (LQ) with a mass of 80 GeV, decaying to a b quark and a τ lepton;
- Neutral scalar boson (A) with a mass of 50 GeV, decaying to two off-shell Z bosons, each forced to decay to two leptons: A → 4
- Scalar boson with a mass of 60 GeV, decaying to two tau leptons: $h_0
 ightarrow au au$
- A charged scalar boson with a mass of 60 GeV, decaying to a tau lepton and a neutrino: $h_\pm \to \tau \nu$
- Knowledge Distillation used to create a smaller network to fit in e.g. FPGAs which behaves similarly to the beefier network;
- The student should be optimized to learn from the teacher as much as possible, keeping in mind the hardware restrictions of deploying NN on FPGAs.

INEN - CNAE

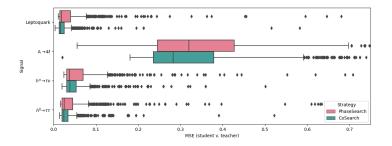
Student Optimization - What should we do first?

- 2 "dimensions" for optimizing a NN for FPGAs: architecture and quantization;
 - ▶ quantization ≈ converting all parameters (e.g. weights) to fixed-point numbers, better handled by FPGAs
- Is there a difference in searching for the best candidate with or without the quantization process in mind?

Strategy: first a simple hyperparameter search with no quantisation; then we repeat the hyperparameter search + quantisation search.

▲口▶ ▲掃▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

CoSearch v. PhaseSearch

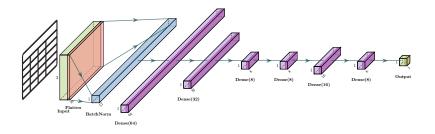


CoSearch Architecture and Quantization parameter space searched simultaneously;

PhaseSearch Quantization parameter space searched after optimal Architecture;

Results are consistent but CoSearch more peaked to lower values.

AD performance - Best student



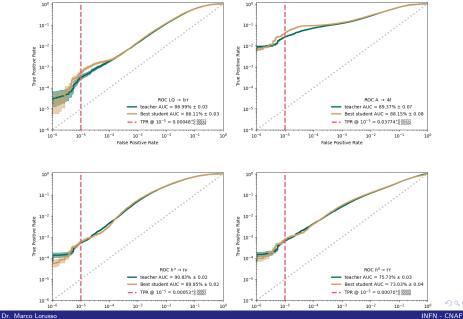
- Hidden layers:
 - 64 nodes, 16 bits per w/b (6 bits integer part);
 - 32 nodes, 16 bits per w/b (6 bits integer part);
 - 8 nodes, 16 bits per w/b (6 bits integer part);
 - 8 nodes, 8 bits per w/b (2 bits integer part);
 - 16 nodes, 16 bits per w/b (6 bits integer part);

Image: A mathematical states and a mathem

• 8 nodes, 16 bits per w/b (6 bits integer part);

- 57 input nodes;
- ► ≈ 10% teacher model parameters

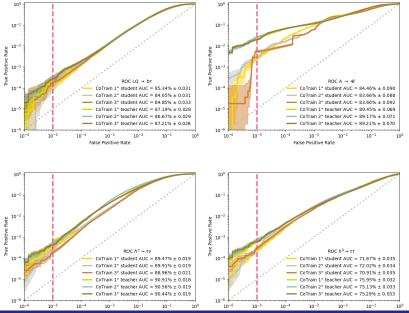
Dr. Marco Lorusso



Testing Co-training Distillation

Co-training distillation sees the teacher and student training **at the same time**. The training step of this procedure sees multiple terms:

- The teacher objective is still to perform the task as best as possible;
- The student tries to emulate the teacher even in the learning procedure;
- In this way the pace of "emulating" and learning the task can be tuned;
- An element of noise can be added right in the objective function to avoid overfitting.



Dr. Marco Lorusso

Conclusions

- Knowledge Distillation was tested as a way to optimize an AE for search of physics events not explained by the SM;
- In the comparison between the CoSearch and PhaseSearch quantization approaches, the former offers a set of students more peaked around the best one. This suggests that this procedure should yield better results faster then the latter.
- The co-training technique for knowledge distillation was also tested. The first results see an overall worse performance in the anomaly detection task w.r.t. post-training distillation;

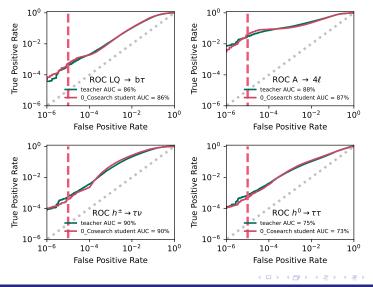
Thank you

- < □ > < □ > < 回 > < 回 > < 回 > < 回 > < □ > <

Dr. Marco Lorusso Optimization of ML-Based BSM triggering with Knowledge Distillation for FPGA implementation INFN - CNAF

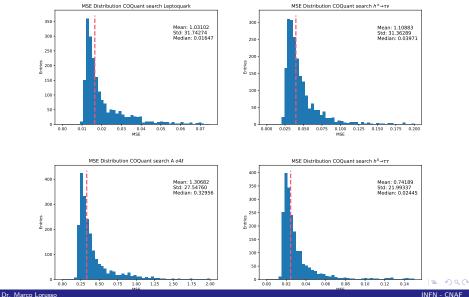
14/14

Best Postsearch student (Validation set)



Dr. Marco Lorusso

Losses' MSE distribution Cosearch

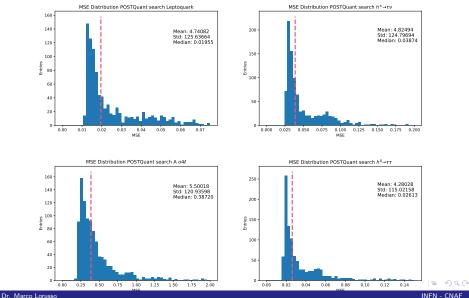


Optimization of ML-Based BSM triggering with Knowledge Distillation for FPGA implementation

INFN - CNAF

16/14

Losses' MSE distribution Post search

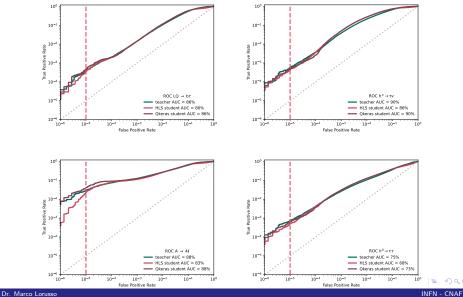


Optimization of ML-Based BSM triggering with Knowledge Distillation for FPGA implementation

INFN - CNAF

17/14

Best Co-quantization student ROCs



Hardware footprint after Synthesis

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-		0	120	-
FIFO	-	-	-	-	-
Instance	-	850	24674	214625	-
Memory	-		-	-	-
Multiplexer	-	-	-	267	-
Register	-	-	1924	-	-
Total	0	850	26598	215012	0
Available	2688	5952	1743360	871680	640
Available SLR	1344	2976	871680	435840	320
Utilization (%)	0	14	1	24	0
Utilization SLR (%)	0	28	3	49	0

Latency (cycles) Latency (absolute)					
min	max	min	max		
100	100	0.500 us	0.500 us		

- Target platform: Alveo U50 for testing purposes;
- Data only about the NN kernel;
- The NN sits comfortably in a single "slice" (SLR) of the board;
- With further optimization these figures could be reduced even more;
- The same can be said for the latency (500 ns).