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Introduction

▶ Machine Learning strongly considered to process the increased amount
of data in next phases of LHC → major focus on Artificial Neural
Networks;

▶ Trigger latency and energy constraints are quite unique → need for
specific software development and strategies to deploy ANN efficiently
on the hardware available on-site, like FPGAs.

▶ An important candidate for using ML for triggering is the research for
Beyond Standard Model events:

• Networks like Autoencoders are unbiased algorithm which can select events
based on their degree of abnormality, without theoretical priors;

▶ Need to optimize and compress these kind of algorithm to make them
suitable for trigger environments.
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Anomaly Detection with AEs

Auto-Encoders (AEs) are neural network models trained to reconstruct their
inputs:

▶ The encoder compress the input into a smaller latent space.

▶ The decoder reconstructs from the compressed representation.

▶ Idea: background samples are associated to low anomaly scores;

▶ Anomalies can be either erroneous, rare or interesting events;

▶ This approach is self-supervised, requiring only background samples in
the data;

▶ No assumption on the type of signal.
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Knowledge Distillation

Source: Knowledge Distillation: A Survey (arXiv:2006.05525)

▶ Knowledge distillation trains a smaller ”student” neural network to
emulate the behavior of a larger ”teacher” network. The teacher network,
usually more complex and accurate, guides the student network to learn
from its knowledge, enhancing generalization;

▶ The student network can match the teacher’s performance with fewer
parameters → Valuable for resource-constrained environments or where
computational efficiency is vital.
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Knowledge Distillation - Different Knowledge

▶ Response-Based Knowledge:
directly mimic the final prediction
of the teacher model;

▶ Feature-Based Knowledge: both
the output of the last layer and
the output of intermediate are
used as the knowledge to supervise
the training of the student model;

▶ Relation-Based Knowledge: the
student learns the relations
between intermediate
representations of data between
layers of the teacher. Source: Knowledge Distillation: A Survey (arXiv:2006.05525)
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Knowledge Distillation - Different Learning Schemes

▶ Offline Distillation: the knowledge
is transferred from a pre-trained
teacher model into a student
model;

▶ Online Distillation (co-training):
both the teacher model and the
student model are updated
simultaneously, and the whole
knowledge distillation framework is
end-to-end trainable;

▶ Self-Distillation the same
networks are used for the teacher
and the student models. This can
be regarded as a special case of
online distillation. Source: Knowledge Distillation: A Survey (arXiv:2006.05525)
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The AD task

▶ Dataset: a typical p-p collision dataset pre-filtered requiring an electron or
a muon with a pT > 23GeV and a |η| < 3 (electron) and |η| < 2.1 (muon);

▶ Injected signals:
• Leptoquark (LQ) with a mass of 80 GeV, decaying to a b quark and a τ

lepton;
• Neutral scalar boson (A) with a mass of 50 GeV, decaying to two off-shell Z

bosons, each forced to decay to two leptons: A → 4
• Scalar boson with a mass of 60 GeV, decaying to two tau leptons: h0 → ττ
• A charged scalar boson with a mass of 60 GeV, decaying to a tau lepton

and a neutrino: h± → τν

▶ Knowledge Distillation used to create a smaller network to fit in e.g.
FPGAs which behaves similarly to the beefier network;

▶ The student should be optimized to learn from the teacher as much as
possible, keeping in mind the hardware restrictions of deploying NN on
FPGAs.
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Student Optimization - What should we do first?

▶ 2 ”dimensions” for optimizing a NN for FPGAs: architecture and
quantization;
▶ quantization ≈ converting all parameters (e.g. weights) to fixed-point

numbers, better handled by FPGAs

▶ Is there a difference in searching for the best candidate with or without
the quantization process in mind?

Strategy: first a simple hyperparameter search with no quantisation; then we
repeat the hyperparameter search + quantisation search.
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CoSearch v. PhaseSearch

CoSearch Architecture and Quantization parameter space searched
simultaneously;

PhaseSearch Quantization parameter space searched after optimal
Architecture;

Results are consistent but CoSearch more peaked to lower values.
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AD performance - Best student
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▶ 57 input nodes;

▶ ≈ 10% teacher
model parameters

▶ Hidden layers:
• 64 nodes, 16 bits per w/b (6 bits integer part);

• 32 nodes, 16 bits per w/b (6 bits integer part);

• 8 nodes, 16 bits per w/b (6 bits integer part);

• 8 nodes, 8 bits per w/b (2 bits integer part);

• 16 nodes, 16 bits per w/b (6 bits integer part);

• 8 nodes, 16 bits per w/b (6 bits integer part);
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Testing Co-training Distillation

Co-training distillation sees the teacher and student training at the same time.
The training step of this procedure sees multiple terms:

▶ The teacher objective is still to perform the task as best as possible;

▶ The student tries to emulate the teacher even in the learning procedure;

▶ In this way the pace of ”emulating” and learning the task can be tuned;

▶ An element of noise can be added right in the objective function to avoid
overfitting.
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Conclusions

▶ Knowledge Distillation was tested as a way to optimize an AE for search
of physics events not explained by the SM;

▶ In the comparison between the CoSearch and PhaseSearch quantization
approaches, the former offers a set of students more peaked around the
best one. This suggests that this procedure should yield better results
faster then the latter.

▶ The co-training technique for knowledge distillation was also tested. The
first results see an overall worse performance in the anomaly detection
task w.r.t. post-training distillation;
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Thank you
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Best Postsearch student (Validation set)
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Losses’ MSE distribution Cosearch
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Losses’ MSE distribution Post search
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Best Co-quantization student ROCs
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Hardware footprint after Synthesis

▶ Target platform: Alveo
U50 for testing purposes;

▶ Data only about the NN
kernel;

▶ The NN sits comfortably
in a single ”slice” (SLR) of
the board;

▶ With further optimization
these figures could be
reduced even more;

▶ The same can be said for
the latency (500 ns).
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