Scintillating light track reconstruction
for fast neutron detection
based on deep-learning techniques
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Techniques for Recoil Proton Track Imaging

Fast neutrons scatter like billiard balls
with protons but are invisible because
they have no charge and don’t ionize

matter directly
EWM, g

If the neutron source is NOT known

If the neutron source is known a
a double scattering is needed

single scattering is sufficient



RIPTIDE detector concept

6cm
A plastic scintillator is ideal for n-p reactions;

protons from hydrogen atoms become visible
through the emitted scintillation light
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RIPTIDE detector concept

A plastic scintillator is ideal for n-p reactions;
protons from hydrogen atoms become visible
through the emitted scintillation light

The generated light is than focused on the sensors
through lens systems; at least two projections are
needed in order to reconstruct the 3d track

6 cm
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Not only n-p scattering

. . . . |
In a plastic scintillator n-C reactions .
can also occur but carbon ions are ‘
hard to see due to short range
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RIPTIDE: current status

Lens system

(f =75 mm>

;f =60 mm>

Ramsden eyepiece

Image intensifier



https://www.photek.com

Monte Carlo simulations

To test the viability of the experiment, a
Geant4 simulation has been developed
to optimise the detector components
and the geometric parameters

The outputs of the simulation are two
orthogonal projections of the proton track

To estimate neutron energy and direction, we need to analyze the proton recoil track by
estimating its direction, orientation, and length, which is correlated to the energy.



Track direction

Find the 2D direction of the projected
tracks with the Hough transform

Each (i, v) is mapped using
p=ucosfd+vsinéb

How to resolve the ambiguity
Fill the (p, 0) space and find the peak in the orientation?
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Track orientation

Barycentre
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Track length - Remove optical aberration using a UNet

A UNet is used to correct optical aberrations in the
track projection image caused by the lens system

Phase Main Blocks Output Shape Param #
Input Input Layer (128, 128, 1) 0
Encoder Conv2D + BN + Dropout (x2) (128, 128, 64) 37,824
MaxPooling2D (64, 64, 64) 0
Conv2D + BN + Dropout (x2) (64, 64, 128) 221,952
MaxPooling2D (32, 32, 128) 0
Conv2D + BN + Dropout (x2) (32, 32, 256) 886,272
MaxPooling2D (16, 16, 256) 0
> Conv2D + BN + Dropout (x2) (16, 16, 512) 3,539,968
Concatenate MaxPooling2D (8, 8, 512) 0
/ % Conv2D + BN + Dropout (x2) (8, 8, 1024) 14,157,824
) ' Decoder Conv2DTranspose + Concat (x4) Variable 2,786,240
R | 2 Conv2D + BN + Dropout (x2 per block) Variable 9,403,496
L Output Conv2D (1 filter) (128, 128, 1) 65
Ll Total 31,054,145

Encoder Decoder "



Track length - Remove optical aberration using a UNet
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Results
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Results
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Conclusion & Future developments

s [he method for measuring the energy and direction of neutrons incident on the

scintl
know

lator appears promising based on Monte Carlo data when the source position is

A

= Hough transform and the momenta method are used to determine direction anad
orientation

= A UNet model is used to reconstruct the track length more precisely

= [he neutron energy is estimated by combining these methods

m Extending this approach to double-scattering events would enable the determination
of the source position when it is unknown.

s Once experimental data become available, these techniques will be applied and
validated
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