

Quantum Error Mitigation via Autoencoder Neural Networks

Xiao-Dao Lin¹, Hsi-Ming Chang², Jhih-Shih You³ and Hsiu-Chuan Hsu¹

¹ Graduate Institute of Applied Physics, National Chengchi University

² Brightlight Vision, Santa Clara, CA

³Department of Physics, National Taiwan Normal University

Academic Sinica @ ISGC

Content

- Introduction
- Methodology
- Results & Discussion
- Conclusion & Future work

Introduction

Motivation, Previous work & research

Background – Motivation & Previous work

• Due to the challenging control of qubits in different techniques, there are some environmental perturbations that cause the errors in measuring the qubits (readout errors).

		D I	Creastally		
Modian T1.	175 99 us	Decoherence	Crosstalk		
Median 11.	175.09 us	Information	Idle aubits interact with their	- † ¶	
Madian T2	124.02.00	Information	Tate qubits interact with then		
Median 12:	134.83 US	loss over time.	neighbors.		
			0	1.1	

Kevin J. Sung, Quantum Algorithm Engineer, IBM, "Execution on Noisy Quantum Hardware," *Road to Quantum Utility Workshop 2025:* Using Quantum Devices with More Than 100 Qubits, January 22, 2025. Image from IBM Quantum.

• A promising approach is quantum error mitigation which focuses on reducing errors. Common methods include zero-noise extrapolation(ZNE), probabilistic error cancellation, measurement error mitigation and learning-based methods [2].

^[1] S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, "Hybrid quantumclassical algorithms and quantum error mitigation," Journal of the Physical Society of Japan, vol. 90, no. 3, p. 032001, 2021. [Online]. Available: https://doi.org/10.7566/JPSJ.90.032001

^[2] Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Huggins, Y. Li, J. R. McClean, and T. E. O'Brien, "Quantum error mitigation," Rev. Mod. Phys., vol. 95, p. 045005, Dec 2023. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.95.045005

Background – zero-noise extrapolation

- Two steps of ZNE:
 - 1. Intentionally scale noise

2. Extrapolation to the noiseless limit

Background – Autoencoder

- Vincent et al. [3], [4] introduced denoising autoencoders, demonstrating their capability to extract and compose robust features by reconstructing original signals from corrupted inputs.
- Zhang [5] shows the effectiveness of convolutional autoencoders in image denoising tasks, demonstrating superior spatial feature learning compared to traditional fully connected architectures.

[3] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, "Extracting and composing robust features with denoising autoencoders," Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103, 2008.
[4] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local

denoising criterion," Journal of Machine Learning Research, vol. 11, pp. 3371–3408, 2010. [5] Y. Zhang, "A better autoencoder for image: Convolutional autoencoder," in Proceedings of the International Conference on Image Processing, 2018.

6

This study

• In this paper, we propose to use convolutional denoising Autoencoder to mitigate the readout errors in measurement probabilities of quantum circuits.

Methodology

The methods.

Quantum Measurement Probability

- To control the wave function $|\psi\rangle$, we design a circuit for specific number of qubits by adding operators(gates).
- The measurement probability is given by |⟨i|ψ⟩|².
 (|i⟩ stands for one of the basis vectors).
- If the wave function is $|\psi\rangle = H \otimes H|00\rangle = \frac{1}{\sqrt{4}}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$:

Datasets Generation – Qiskit SDK

- Circuits : 700 four qubits **Random** circuits for each **depth** from 1 to 18.
- Measurement probabilities for each circuits to get the target and noisy data:

Datasets	Experiment for each circuit	Shot per experiment	Backend (target & input)	Size of row data
1E1Ks	1	1K	Aer & FakeLima	700*18 = 12.6k
100E1Ks	100(increase)	1K	Aer & FakeLima	1.26M
100E10Ks	100	10K(increase)	Statevector & FakeLima	1.26M

Models – Autoencoder

- In our work, using 1D Convolutional layers instead of 2D layers contains the same performance without extra data transformation.
- Below is the schematic plot to illustrate the model we use.

Training Process

• During training:

•	Software	&	Hardware:
---	----------	---	-----------

Туре	Method
Cost function	Mean Squared Error
Optimizer	Adam
Learning rate	0.0005
Training Epoch	500 epochs
Batch size	10k
Saved Checkpoint	At Minimal validation loss

Туре	Method
Code implementation	Tensorflow
CPU(for data generation)	Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz (6 cores, 12 threads)
GPU(for training model)	NVIDIA TITAN RTX GPUs (24GB VRAM each)

Model evaluation

• Loss calculation method : Two metrics about Mean Absolute error(MAE).

Dataset error:
$$L_{MAE} = \frac{1}{N} \sum_{j=1}^{N} |P_{targ,j} - P_{noise,j}|,$$

Prediction error: $L_{MAE} = \frac{1}{N} \sum_{j=1}^{N} |P_{targ,j} - \hat{P}_{j}|$

*N is the number of basis vectors ; $P_{targ_j} \& P_{noisy_j}$ is the target and noisy measurement probability for j-th basis vector ; \hat{P}_j is the prediction measurement probability for j-th basis vector.

Model evaluation

- We use four common quantum circuits and algorithms as the evaluation datasets.
- (a) Trivial Paramagnet
- (b) A single depth of Random unitary gates drawn from Haar measure (Haar single)
- (c) Grover's search algorithm with the target state $|1111\rangle$
- (d) Quantum Fourier Transformation (QFT)

Model evaluation

U₀ is the u-gate with $(\vartheta, \phi, \lambda)$ in $(\frac{\pi}{2}, 0, \pi)$. U₁₋₄ is the u-gate with $(\vartheta, \phi, \lambda)$ sample from Haar measure.

$$U(\theta, \phi, \lambda) = \begin{bmatrix} \cos\frac{\theta}{2} & -e^{i\lambda}\sin\frac{\theta}{2} \\ e^{i\phi}\sin\frac{\theta}{2} & e^{i(\phi+\lambda)}\cos\frac{\theta}{2} \end{bmatrix}$$

Results

Discuss about the results.

Datasets noise level & Prediction error

Dataset naming rule: E: experiment K: shot number

- The noise level for the three test datasets is almost the same.
- More training datasets improve the prediction. With more shots per experiment, the prediction improves further.

Loss curve

- No overfitting.
- The validation minimum reaches 10^{-6} .

Evaluating with unknown circuits

- For Grover's Search, Quantum Fourier Transform (QFT), and trivial paramagnet, our model denoises the error at different levels.
- However, for Haar single, our model increases the error instead.

Bias datasets for Haar single

- The datasets lack information about unentangled circuits.
- We generate additional Haar single datasets to bias and add into the 10E10Ks datasets by different ratios.

T-SNE Visualization

• For four algorithm datasets inputs, we take the output from the last bottleneck layer and reduce it to two dimensions using t-SNE.

• A clear classification into four distinct groups for the four different algorithms.

Conclusion

The conclusions.

Summary

• Take-home message

- The statistical error in both target and noisy data sharply influences the convergence of the model.
- The autoencoder can reduce the noise in datasets from the noise model.
- For unseen circuits, the model mitigates the noise at different levels.
- The encoder successfully learns the features of the four common circuits.
- Future work
 - The noise model cannot reflect the noise level in real quantum machines, so we expect the model need to be fine-tuned with the real quantum machine.
 - Accommodating different lengths of measurement probability inputs using a sequence-to-sequence model.

Appendix A - Boxplot

From Jhguch at en.wikipedia, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=14524285