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https://pytorch-geometric.readthedocs.io/en/latest/tutorial/gnn_design.html
https://arxiv.org/abs/2106.11535
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Jet Dataset
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https://cms-opendata-workshop.github.io/workshop2021-lesson-basicobjects/04-jetmet/index.html
https://tikz.net/author/izaak/

Classical ML for Jets

Overview

O

@
w OO0
- OO0

S E— T

DNN (arXiv 1704.02124)

if d;, < d,s: Input list ordering 1-2-3-4-5
if d,; > d,.: Input list ordering 4-5-1-2-3

L — T

LSTM (arXiv 1711.09059)

Edge_Conv

16. C = (6 _ﬂ 'Ii:jniﬂ-

Block

64)

|

Particles Observable
Per—Particle Representation Event Representation
. Latent Space |
100 102 l °_o l
O — |
75| « |<—le i
50/ T | - E @ o
O i et — EE—— o Ev‘ i F »
25 I .g. /" @ —>i ° : a 1
. ) E '
< O} . 3 ! -
= QE) ! :
-25} u . =
<
<
O

p—
S
—

50

I PSS

____________________________________________________

-100

9 15 1 05 0 05 10 15 2 Energy/Particle Flow Network
1

| —— S S — S

CNN (arXiv 1707.08966) Deep Sets: EFN/PFN
(arXiv 1810.05165)
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Classical Machine Learning

1.

Message Passing: Compute the information for
each particle pair through some parametrized
transformation.

. Node Aggregation: Aggregate the transformed

information for each particle. Typically element-

wise summation < permutation-invariant

Repeat step 1 & 2 for several times (optional).

Graph Aggregation: Aggregate the information of
all particles.

>l 1. Message Passing

B B

A A
C C

E l 2. Node Aggregation

3. Repeat steps 1 & 2
-------------------- 4. Graph Aggregation



Classical Machine Learning
Deep Sets Theorem and MPGNN

« Deep Sets Theorem (arXiv 1703.06114) : A function (model) f is permutation-invariant over a

set X (particles) if and only if f(X) = g Z for some suitable transformations g and /.

X.EX
A

 The Message-Passing Graph Neural Netwc-‘)_rk (MPGNN) obeys the Deep Sets Theorem, and is

usually written as:

| Aggregation function

(MEAN, SUM, MAX, etc.)



QCGNN

Quantum Complete Graph
Neural Network Q0
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Quantum Machine Learning

Variational Quantum Circuit

Encode Data x Tunable Parameters @ Measurement
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Updated ¢ Gradient Descent Calculate Loss Output
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QCGNN

Quantum Complete Graph Neural Network

Suppose we have N particles with features {x; | 0 <i < N—1}. We
prepare a quantum circuit with 7; + no qubits where

« n; = [log, N | is the number of qubits in the index register (/R)
* Ny is the number of qubits in the network register (VR)

The Initial guantum state is initialized as

N—1

1
— 110 ®nQ
|Wo> \ﬁ\f ,Z:o" )1 0)

If N = 2", then we can simply use Hadamard gates. Otherwise, one
should use some Uniform State Oracle (USO) to prepare the state.

Uniform State Oracle
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QCGNN

Quantum Circuit

\ USO

Uenc(X0)

Uenc (x1)

Uenc(x2)

Uparanm(0))
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QCGNN

The quantum state before measurement is | ) = Z | X, 0)
Measurement .
e . X = Consider a Hermitian matrix J with dimension 2" X 2" full of ones, i.e.,

— A
(mli 2) ! USO | . g X

— A

' (I + X)®"™
NR

(ng = 4)

,f Z Z (x;; 0| P|x; > Similar to MPGNN, with
c' 1° i

{ automatic aggregation.
P z<N J<N i
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QCGNN O(N) Pauli-string

: ) observables
Gate and Computational Complexity

S N U e e T O MOV N Juy  § O @
0(10g2 N ) gates (mui . [uso|] ¢ ,;
and circuit depth % 0 ’ Y
(n;\lf:{ 4) ] : ’ENC(XO) Uenc(X1) Uenc(x2) ' UPARAM(H(T)) ‘
: Assuming Deep VQC
Additional O(log, N) ancilla : N ST
qubits and Toffoli gates B Rt sttt SN S — o = e & ] |

When N is large and the parametrized gates are deep comparing to encoding gates, QCGNN

only needs O(N) computations, while classical MPGNN requires O(N?) computations!
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Experiments Results
Quantum Simulators & IBMQ

Jet Substructure (CMS 2022 Open Data Workshop)
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https://cms-opendata-workshop.github.io/workshop2022-lesson-physics-objects/06-substructure/index.html
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Training Results
AUC and Accuracy

 Each training process was conducted with 5 different random seeds and 30 epochs.

 Each class has 25K training samples, 2.5K validation samples, and 2.5K testing samples.

» The number of particles of jets lies between 4~16 = At most n; = 4 qubits for IR is needed.

 The performance of the state-of-the-art classical models is also presented.

State-of-the-art
classical models

Classical models for
benchmarking

QCGNN with
np=3andn, =0
(On simulators)

Model

Topr Dataset (2 classes)

JETNET Dataset (5 classes)

+# params AUC Accuracy # params AUC Accuracy
Particle Transtormer 2.2M 0.946=0.005 0.868=0.009 2.2M 0.889=0.002 0.656=0.006
Particle Net 177K 0.953+0.003 0.88540.006 178K 0.89640.003 0.66910.004
Particle Flow Network 72.3K 0.9544-0.004 0.88540.005 72.7TK 0.90040.003 0.67520.005
MPGNN - njys = 64 13K 0.96140.003 0.896+0.003 13.3K 0.90340.002 0.68310.007
MPGNN - npy =6 255 0.92440.006 0.86640.006 323 0.8654-0.004 0.61540.010
MPGNN -ny =3 126 0.92240.005 0.86410.006 194 0.75740.110 0.47540.141
QCGNN - ng =6 201 0.93240.004 0.86840.005 269 0.82240.003 0.54340.006
QCGNN - ng =3 99 0.91940.006 0.86440.005 167 0.79640.009 0.505%0.014




IBMQ Results

Noise Extrapolation
* The training of QCGNN is done with simulators.
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IBMQ Results

Runtime of Quantum Gates

* The gate runtime experiment is conducted with two different IBMQ backends for 10 times.

o Irycand 1p,pa, are the time for encoding and parametrized gates respectively.

TBMQ Backend ~f
. Scales as O(V)

1Ibm_nazca

ibm_strasbourg

00 = N0 & N 2

Constant time O(1)

19



Summary

o |n the task of jet discrimination, graph is one of the natural representation. To design

permutation-invariant models, graph neural networks have become a popular architecture.

O We introduce a new quantum model, the Quantum Complete Graph Neural Network. If
the parametrized gates are deep enough, the cost of QCGNN only scales as O(/V ), while

classical MPGNN requires O(N?).

o QCGNN has also been tested on IBMQ real guantum devices. However, due to noise in the

quantum circuits, information transmission was unsuccessful.

o As the quantum computers becoming more robust in the future, the potential for quantum
advantage of the QCGNN can be studied.
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Backup Slides
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CMS Coordinate System

The particle flow is defined as

” n <0
n > 0
. The transverse momentum p, = \/ p)% + py2 . D= —oo
__—-|APT N
P e
. The azimuthal angle ¢ = tan ™ (— ‘J‘/ '
px = oo - S
. 0

. The pseudo-rapidity # = — In [tan(—)] ~, conter of

) N | the LHC

CMS Coordinate System by |zaak Neutelings

In jet analysis, the differences A¢@ and Ay relative to the jets is adopted, since they are Lorentz invariant
under boosts in z-direction.
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https://tikz.net/author/izaak/

Dataset
Top Tagging (arXiv 1902.09914)

2 Data set

The top signal and mixed quark-gluon background jets are produced with using Pythia8 25]
with its default tune for a center-of-mass energy of 14 TeV and ignoring multiple interactions
and pile-up. For a simplified detector simulation we use Delphes |26| with the default ATLAS
detector card. This accounts for the curved trajectory of the”cha,rgé”partlcls assuming a
magnetic field of 2 T and a radius of 1.15 m as well as how the tracking efficiency and momen-
tum smearing changes with 7. The fat jet is then defined through the anti-kr alorlthm 27]
in FastJet [28] with R = 0.8. We only consider the leading jet in each event and require

pr,j = 550 .... 650 GeV . (1)

For the signal only, we further require a matched parton-level top to be within AR = 0.8,
and all top decay partons to be within AR = 0.8 of the jet axis as well. No matching is
performed for the QCD jets. We also require the jet to have |n;| < 2. The constituents are
extracted through the Delphes energy-flow algorithm, and the 4-momenta of the leading 200
constituents are stored. For jets with less than 200 constituents we simply add zero-vectors.

March 18, 2025 ISGC (@ Academia Sinica



Dataset
JetNet (arXiv 2106.11535)

B JetNet Generation

The so-called parton-level events are first produced at leading-order using MAD-

GRAPHS5_aMCATNLO 2.3.1 [51] with the NNPDF 2.3LO1 parton distribution functions [52]. To
focus on a relatively narrow kinematic range, the transverse momenta of the partons and undecayed
gauge bosons are generated in a window with energy spread given by Apt/pr = 0.01, centered
at 1 TeV. These parton-level events are then decayed and showered in PYTHIA 8.212 [5] with the
Monash 2013 tune [53], including the contribution from the underlymg event. For each original
particle type, 200,000 events are generated Jets are clustered using the anti-£7 algorithm [54],
with a distance parameter of £ = 0.8 using the FASTJET 3.1.3 and FASTJET CONTRIB 1.027
packages [55, 56]. Even though the artn level pp distribution is narrow, the jet pr spectrum is
significantly broadened by kinematic recoil from the parton shower and energy migration in and
out of the jet cone. We apply a restriction on the measured jet pr to remove extreme events outside
of a window of 0. pr < 1.6 TeV for the pr = 1TeV bin. This generation 1s a significantly
simplified version of the official simulation and reconstruction steps used for real detectors at the
LHC, so as to remain experiment-independent and allow public access to the dataset.




Classical ML for Jets
Message Passing GNN

TARGET NODE

INPUT GRAPH

Figure adapted from "Stanford CS224W: Machine Learning with Graphs” by J.Leskovec.

—>(k) k —>(k—1) ' _>(k k-1 * GCN (arXiv 1609.02907)
i },(I @ PP (x X e) »

e * GraphSAGE (arXiv 1706.02216)
. .  GAT (arXiv 1710.10903)
Aggregation function

k-th update (MEAN, SUM, MAX, etc.) - EdgeConv (arXiv 1801.07829)
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https://web.stanford.edu/class/cs224w/

Particle Flow Network

arXiv 1810.05165 Motivated by the Deep Set Theorem

Particles Observable

Per—Particle Representation Event Representation

O

EFN

PFN-ID
PFN

Energy/Particle Flow Network
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Single Qubit Gates

Rotation Gates

Theorem 4.1: (Z-Y decomposition for a single qubit) Suppose U 1is a unitary

operation on a single qubit. Then there exist real numbers o, 3, v and 0 such that

U = e R.(B)Ry(7)R.(9). (4.11)

R.(0) = e 9%/ = cos QI — 12.8In QX = | C.OS.§9 e Si‘;g | (4.4)
2 7 - —isin cos 5

R,(0) = e *Y/2 = cos g.r — jsin gy — ;’;g _cingg (4.5)

R.(0) = e %%/ = ¢os gf — ¢ sin gZ ~ | 6—:)9/2 6,6-2/2 - (4.6)

March 18, 2025 ISGC (@ Academia Sinica
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Multi-Qubit Gates

Decomposition of Multi-Controlled Gates

c1) —e o
Co) —* .
control qubits ¢ |c3) . °
C4) o o
Cs5) o o
0) —b—e 5
| 0) e > -
work qubits 0) i .
0) S S>
target qubit J(f

Figure 4.10. Network implementing the C"™(U) operation, for the case n = 5.

Adopted from “Quantum Computation and Quantum
Information” by N & C.
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Uniform State Oracle
arXiv 2306.11747

In this paper, we propose an efficient approach for quantum state preparation of uniform superposi-
) that offers a significant (exponential) reduction in gate complexity and circuit

tion state |WV) = ﬁ ija
depth without the use of ancillary qubits. We show that using only n = [log, M qubits, the uniform super-
ircui M).

position state |¥) can be prepared for arbitrary M with a gate complexity and circuit depth of O(log,

0.077 0.077 00800 0.077 0.077 0.077 0.077

13-basis uniform state:

o
o
B

Probabilities

0.02 -

N )
=)

N ~
S N S5 S 0N

0.00

0.08 1—2L.2277
fQuantum circuit for generating a\ — | | I | | | | | | | | | ‘
9 ——————— H ——m ™ ™ @ ™ @ @ X X X 0.06-

1 12 |
- '”’>:m§“> y
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VQC Ansatz

PennyLane

|
N E N N
Q
O =
XD
o=
9
o=
N—" N—" N—" N—"

gml.BasicEntanglerLayers gml.StronglyEntanglingLayers
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Model Setup

Concat(x,x?)
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Feature Transformation
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16 = n,
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QCGNN
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USO

Uniform State Oracle

v

Data Encoding
Multi-Controlled Rotation Gates

v

Parametrized Operators
Strongly Entangling Layers

v
Data Encoding

Multi-Controlled Rotation Gates

v

Parametrized Operators
Strongly Entangling Layers

v

Measurements
Measure X for IR, and Z for NR
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Noise

Simulated with PennyLane

gml.DepolarizingChannel gml.GeneralizedAmplitudeDamping
Data Encoding

| 1 0]
Noise K():\/l—p 0 1]

VQC _
0 1]

Noise

Data Encoding

Noise

VQC
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Parameter Shift Rule
arXiv 1905.13311

Gradients of parameterized quantum gates using the parameter-shift rule and gate
decomposition

Gavin E. Crooks*
California Institute of Technology, Pasadena, CA 91125, USA and
Berkeley Institute for Theoretical Sciences, Berkeley, CA 94706, USA

. Consider a VQC output f(0) = (w|U é(H)A U-(0) | w), where A is some Hermitian operator of
observable and U,(0) = e~%“C with some Hermitian operator G.

« If G has two unique eigenvalues ¢, and ¢,, the gradient can be calculated by

d

fo=r |0+ —f0-)|  win  r=e, -
dxfx = 4r 4r v T 2 ‘1
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Barren Plateau

arXiv 2309.09342

p

Landscape with no Barren Plateaus JSSSSS
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D

Pq(p)Pg(O)

Varg|lg(p, O)| = dim(g)

/ ; Dimension of the DLA

Sources

of Barren Plateaus

Tr[U(8)pUT(6)0]

Generalized Entanglement
QORI 0II(] OTRI(OS[Y

Generalized Locality
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