

Willow and quantum computing below the surface code threshold

Ping Yeh <pingyeh@google.com> Google Quantum Al

International Symposium on Grids & Clouds March 18, 2025

Google

Something I saw near my residence in Taipei

Outline

- Google Quantum Al
- The Willow Processor
- Random Circuit Sampling on Willow
- Quantum Error Correction below threshold
- Outlook

Google Quantum Al

Our mission is to build best-in-class quantum computing for otherwise impossible problems.

Example useful quantum algorithm

Quantum Simulation of Cytochrome P450 Enzyme (A relatively large problem size)

Accelerate drug testing by selecting out drug candidates that are instantly metabolized (~70%)

Requires: 10⁹-10¹¹ Toffoli operations without error Quantum Al

Example useful quantum algorithm

Quantum Simulation of Cytochrome P450 Enzyme (A relatively large problem size)

Accelerate drug testing by selecting out drug candidates that are instantly metabolized (~70%)

Requires: 10⁹-10¹¹ Toffoli operations without error Quantum Al

Challenge:

Many applications take much larger computational capacity than can fit on modern quantum hardware.

Key reason: **Errors** Qubits are fundamentally error-prone $(10^{-2}-10^{-4})$

Goings, Joshua J., et al. PNAS ($202\vec{2}$)

Quantum error correction

A bridge to practical applications

Hardware goal

Build qubits with gate error $\sim 10^{-10}$

Surface code logical qubit

Distribute quantum state over d² physical qubits

With sufficient **performance**, increase *d* to **exponentially suppress** errors (in theory)

Exponential error suppression

Trade many good physical qubits for an excellent logical qubit

Threshold:

Jantum Al

Suppress errors with scale when hardware is *good enough*

Empirical formula:

Logical error
per cycle
$$\varepsilon_{d} = C \cdot \left(\frac{Physical error rate}{Threshold error rate} \right)^{(distance+1)/2}$$

error per cycle, ϵ_d 10^{-3} 10^{-4} 10^{-5} 10^{-6} 0.075% 0.15% 0.3%

distance-3: 17o

distance-7:97

distance-17: 577g

distance-25: 12490

 10^{-1}

10-2

Physical error rate (2Q gate, SI1000)

QEC: a path to extremely low error rates, if hardware is good enough

Fowler et al., PRA (2012)

0.6%

1.0%

Threshold

15

Our Roadmap

Our Processor Journey

Introducing Willow

Introducing Willow

Willow

Willow, our newest generation of superconducting processors, enabling progress towards realizing our mission to: build best-in-class quantum computing for otherwise unsolvable problems.

Willow Architecture and Performance Overview

First-of-its-kind architecture, featuring 105 qubits and the largest computational volume of any quantum processor.

Architecture

- Square grid of superconducting transmon qubits
- Highly tunable qubits and couplers
- Number of Qubits: 105
- Average Connectivity: 3.47

Performance

- 5x increase in T_1 , from 20 to 100 μ s
- Improved operational fidelities
- Improved calibration flexibility
- Uniquely suited to error correction (and therefore scaling and useful applications)

Willow Architecture and Performance: Coherence improvements

5x Increase in T_1 , from 20 to 100 μ s

In House Fabrication in Santa Barbara: One of just a few dedicated superconducting fabs in the world

Willow Architecture and Performance: Key Specifications

Number of qubits: 105 Average Connectivity: 3.47

Specifications	Quantum Error Correction (QEC, chip 1)	Random Circuit Sampling (RCS, chip 2)
T ₁ time (mean)	68 µs	98 µs
Single-qubit gate error (mean, simultaneous)	0.035%	0.036%
Two-qubit gate error (mean, simultaneous)	0.33% (CZ)	0.14% (iswap-like)
Measurement error (mean, simultaneous)	0.77% (repetitive, measure qubits)	0.67% (terminal, all qubits)
Measurement Rate (per second)	909,000 (surface code cycle = 1.1 µs)	63,000
Application Performance	$\Lambda_{3,5,7} = 2.14 \pm 0.02$	XEB fidelity depth 40 = 0.1%

Willow Architecture and Performance: Error distributions for QEC

Takeaways:

- Means and medians don't tell the whole story
- Overall, these are about 2x better than our previous generation chip, Sycamore

Cumulative distributions of error probabilities

- **Red:** Pauli errors for single-qubit gates
- **Black:** Pauli errors for CZ gates
- Blue: Average identification error for measurement

- **Gold:** Pauli errors for data qubit idle during measurement and reset
- Teal: Weight-4 detection probabilities (distance-7, averaged over 250 cycles)

Error correction will be key to building a fault tolerant quantum computer. And Willow is uniquely capable of effective error correction

One useful way to measure error correction effectiveness is Λ ("lambda"), the error suppression factor.

- A is the ratio of the logical error rate for a smaller surface code (e.g. distance 3 code) to that of a larger surface code (e.g. distance 5 code).
- It represents the reduction in logical error rate when increasing the code distance by two, e.g. from 3 to 5 to 7.

A>1 indicates that increasing the code distance (i.e. using more qubits for a calculation) *actually improves* the logical error rate, which is essential for building fault-tolerant quantum computers.

With Willow, we show a

 $\Lambda_{3,5,7} = 2.14$

(where 3,5,7 are the code distances)

Since M2 in 2023, the physical error rate improved by 2x, and logical error rates are 20x better.

Exponential error suppression

Trade many good physical qubits for an excellent logical qubit

Threshold:

Jantum Al

Suppress errors with scale when hardware is *good enough*

Empirical formula:

error per cycle, ϵ_d 10^{-3} 10^{-4} 10^{-5}

 10^{-1}

10-2

distance-3: 17o

distance-7:97

distance-17: 577g

distance-25: 12490

0.075%

Physical error rate (2Q gate, SI1000)

0.3%

0.15%

QEC: a path to extremely low error rates, if hardware is good enough

Fowler et al., PRA (2022)

0.6%

1.0%

Threshold

Random Circuit Sampling on Willow

Milestone 1 (M1): Random Circuit Sampling -Beyond classical benchmark

Random Circuit Sampling on Willow: a step change

Willow performed a Random Circuit Sampling (RCS) benchmark computation in under 5 minutes that would take the supercomputer Frontier 10²⁵ years to complete—specifically ten septillion years or:

10,000,000,000,000,000,000,000,000

Years

Willow Enabled Random Circuit Sampling

Range from an idealized situation with unlimited memory (\blacktriangle) to a more practical, embarrassingly parallelizable implementation on GPUs (\bigcirc).

QEC below the surface code threshold

Quantum error correction (QEC) is key to building a fault tolerant quantum computer

Hardware goal

QEC for exponential suppression of errors

Trade many good physical qubits for an excellent logical qubit

QEC: A path to extremely low error rates, if hardware is good enough

Logical qubit: retain 1 qubit degree of freedom

Surface code logical qubit

Implementing the surface code

105-qubit Willow processor

Logical operators X_L, Z_L

Quantum Al

In the paper, we also have a 72-qubit processor with similar design (only fits up to d35)

Scaling from "distance 3" to "distance 7" code

Key challenge: Overcoming additional errors from adding qubits

Distance-3 "1 error at a time" 17 qubits

Distance-5 "2 errors at a time" 49 qubits

Distance-7 "3 errors at a time" 97 qubits

Measuring Λ (error vs. size)

Compare smaller codes to d=7 (covering set with minimal overlap)

Also, measure a large number of cycles (~ $1/\epsilon$) to allow (bad) effects like leakage accumulation to appear

Measure qubit checks parity of neighboring qubits

Data qubit has parity checked by four neighbors

Data idle during measure/reset ≈70% of cycle duration!

Scaling from d=3 to d=7 on Willow enables dramatically improved quantum error correction

With Willow, we show a $\Lambda_{3,5,7} = 2.14$ (where 3,5,7 are the code distances).

This is **2x better than M2** results in 2023, with error **20x** better.

This demonstrates a key strength of the Willow chip: it is designed with error correction (and therefore scaling) in mind.

Where do we go from here: M3 (a long-lived logical qubit)

Repetition codes: ultra-low error regime

"Easy mode" 1D version of surface code

Exponential suppression over many orders of magnitude ($\Lambda = 8.4$)

Discovered new, rare error mechanism (Ongoing work to diagnose and fix)

Rare error bursts (roughly one per hour) set floor, 10⁻¹⁰

The road to practical quantum computing

Previous-gen processors are already useful for science discoveries

Formation of robust bound states of interacting microwave photons (Morvan et al., Nature 2022)

Noise-resilient edge modes on a chain of superconducting qubits (*Mi et al., Science 2022*)

Quantum advantage in learning from experiments (Huang et al., Science 2022)

Unbiasing fermionic quantum Monte Carlo with a quantum computer (Huggins et al., Nature 2022)

Measurement-induced entanglement and teleportation on a noisy quantum processor (Hoke et al., Nature 2023)

Traversable wormhole dynamics on a quantum processor (Jafferis et al., Nature 2023)

Non-Abelian braiding of graph vertices in a superconducting processor

(Andersen et al., Nature 2023)

Dynamics of magnetization at infinite temperature in a Heisenberg spin chain (Rosenberg et al., Science 2024)

Stable quantum-correlated many body states via engineered dissipation

(Mi et al., Science 2024)

Thermalization and criticality on an analog-digital quantum simulator (Anderson et al., in review at Nature)

Observation of disorder-free localization and efficient disorder averaging on a quantum processor (Gayawali et al., in review at Science)

What Willow Means for the Future

Willow is a big step towards developing a large-scale, error-corrected quantum computer.

Its' capabilities gets us closer to a system that can deliver commercially useful applications that are not possible on a quantum computer.

We have been developing a number of applications, with partners

Build best-in-class quantum computing for otherwise unsolvable problems

Willow

