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Al vs ML vs DL INFN

C

Prediction
y_ \ , 2%

Objective: extract “actionable insight” from (big) data

Al = Artificial Intelligence Data Training
ML = Machine Learning
NN = Neural Network

DL = Deep Learning

O

Choose an algorithm, perform its “training” on data ("
attributes” vs "features”) to extract “parameters” with
optimisation techniques (e.g. “gradient descent”) that
minimise the errors of the model on the observations (“cost
function”), in a process governed by “hyper-parameters”
tuning

Al

dagli Anni 50

ML

dagli Anni 80

DL

dal ~2010

Result: a ML model to be applied to previously unseen data

— “data-driven modelling”
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Neural Networks
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First models of artificial neuron (McCulloch, Pitts, 1943)

* Neuron behaviour (i.e. info passing) are determined
by “weights”: initially randomly set, they are
modified during “training”

Towards neural networks: “Perceptron” (Rosenblatt, 1958)

Multi-Layer Perceptron (MLP)

* Groups of neurons organized in layers (input layer,
output layer, and one or more intermediate
"hidden” layers, each with one or more neurons)

Back-propagation algo (Rumelhart, Hinton, Williams, 1986)

» an effective technique to train them (i.e. setting
weights’ values)

From shallow NN to Deep NN — Deep Learning
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Past “winters” of Al
e '60: shallow NN hard to train

* '90: Support Vector Machines (SVM), Boostea
Decision Trees (BDT), ..

e 2000+: advanced deep NN architectures

Al's past winters and current spring

IN-N

Current “spring” explainable by:
. "Big data”

e Technology + ML research

/ * (cloud and accessibility)

“

’ ! '&i
"
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O PyTorch
L LSRN fast.ai
TensorFlow SparK’ H,O.Ci
S caffe2  ERiTK 4\ DL4Y
theano

C()oglc Cloud Platform

D. Bonacorsi



//7

ML-based publications in science INFN
10000 Domain All this may explain the rise
— Materials Science o
Chemistry as from the initial plot..
3000 Physics
3
O , Extremely large
£ 6000 T .
= adoption in incredibly
o °
s , short times, towards
4000 .
5 high level of
Z
' pervasiveness
2000
/
: ;

2000 2005 2010 2015 2020
Year

B. Blaiszik, “2021 Al/ML Publication Statistics and Charts”, 10.5281/zenodo.7057437

7 D. Bonacorsi



ML in data acquisition and trigger
* Bkg and trigger rate reduction
» Signal specific trigger paths
e Anomaly detection in data taking

» Unsupervised new physics mining

A £

[ CMS - credits: M.Pierini |

Pervasive ML in HEP [1/3]

C

E.g. LHC experiments’ trigger is a strong “driver” for
high-performances ML applications

* Next-gen trigger systems — real-time reconstruction — real
time analysis

Challenge is the trade-oft between algorithmic
complexity and the performances achievable under

severe time constraints in inference

1 KHz

1 MB/event
—
Offline

10 D. Bonacorsi
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Pervasive ML in HEP [2/3] INFN

C
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ML in Event Simulation

The production of simulated events (full/fast
simulation) is extremely intense from the
computation standpoint (up to the point it
might impact the physics reach of the
experiments). ML can help to reduce such load

e Calorimeter shower surrogate simulator
e Analysis level simulator
 Pile-up overlay generator

e Monte Carlo integration

e ML-enabled fast-simulation

e Invertible full-simulation (probabilistic
programming, ...)

17 D. Bonacorsi



Pervasive ML in HEP [2/3] INFN

A " C
ML in Event Simulation ML in Event Reconstruction

The production of simulated events (full/fast Online/oftline reconstruction might be partially
simulation) is extremely intense from the replaced by surrogate models (approximate —
computation standpoint (up to the point it faster) or by new algorithms (that might offer
might impact the physics reach of the unprecedented performances)

experiments). ML can help to reduce such load e Charged particle tracking (GraphNN, vertexing, ...)

e Calorimeter shower surrogate simulator . . .
e Calorimeter reconstruction (local, clustering, ...)

e Analysis level simulator e Particle flow (GraphNN, ...)

e Pile-up overlay generator - - L
P Y 9  Particle identification (boosted

 Monte Carlo integration jets, isolation, ...)

d -~

 Pileup mitigation <

e ML-enabled fast-simulation

e Invertible full-simulation (probabilistic » Energy regression (end-2-end, ...)
programming, ...)

12 D. Bonacorsi



Pervasive ML in HEP [3/3] INFN
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ML in Data Analysis
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® W/Z tagging @ Dparticle identification
@ H-b bar neutrino detectors

© quarks and gluons @ direct Dark Matter detectors

top quan:k tagging @ cosmology, astroparticle, and cosmic ray physics
@ strange jets ® tracking

® b-tagging , |
® flavor physics - heavy ions / nuclear physics

¢ BSM particles and models
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ML in Data Analysis

13%
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W/Z tagging particile iIdentification
H—b bar neutrino detectors
quarks and gluons direct Dark Matter detectors

top quark tagging cosmology, astroparticle, and cosmic ray physics

strange jets
b-tagging
flavor physics
BSM particles and models

tracking
heavy ions / nuclear physics

Data: IML
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Pervasive ML in HEP [3/3]

ML in Computing Operations

IN-N

C

Application of ML to non-event (meta-)data
might help to increase efficiency and reduce

the need of personpower in Ops, e.g.
automating specific tasks, developing

intelligent/adaptive systems, ultimately acting

on the full chain - from data collection to data

analysis - and make it more agile

* Detector control
» Data quality monitoring
» Operational intelligence

e Predictive maintenance

14
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ML in HEP started by using domain knowledge to perform feature extraction/engineering

« HEP physicists design high-level features, and send them as input to traditional ML “shallow” algorithms

15 D. Bonacorsi



Using ML to improve the determination of particle properties is
now commonplace in all LHC experiments

E.g. energy deposited in calorimeters is recorded by many
sensors, which are clustered to reconstruct the energy of the
original particle

————nes e s b W & & & § 3':':":NC')
.. ] . y,

¢ e.g. CMS trained BDTs to learn corrections using all information
available in the various calorimeter sensors - thus resulting in a
sizeable improvement in resolution

Background rejection

« Alog L(p -m)

x10°>  CMS Preliminary \s=13TeV,L=22fb" x10°  CMS Preliminary [s=13TeV,L=22fb" . PI‘ObNNp
> 60_'111 llllllllllll L L xllerlustIerl_ > :ITIII..IIII]III [T T T T[T T S]ulpercmster
O - ECAL B Ecorocion © 9 ECAL ™ Scoreded ' '
(\D - Barrel-Barrel J-[ Ersal::)ercmste: (\5 8:_ Endcap-Endcap ﬂ _E's"ﬂ”:efguste,_— ()2 () 4 () 6
o 0 | I B S — B Signal eff1c1ency
| - ) B ) - 7 - E5x5 crystals —
g’ 40 - g’ ; - [courtesy: M.Williams]
L1 I . L 6
g i3 Similarly, ML | y used to identify particl
30 : imilarly, IS commonly usead to identity particle types
A 41
20 35_ e e.g. LHCb used NNs trained on O(30) features from all its
_f : subsystems, each of which is trained to identity a specitic
ol 2F particle type
- 1
: : : e ~3x less mis-ID bkg /particle. Further estimates indicated
%0 60 70 80 90 100 110 120 130 20 60 70 80 90 100 110 120 130 already that more advanced algorithms may reduce bkg by
m(e’e) [GeV] m(e’e) [GeV] another ~50%

[ 2015 ECAL detector performance plots, CMS-DP-2015-057. Copyright CERN, reused with permission |
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y ML in the Higgs discovery + study (NN

o ® ® - ] L
ML played a key role in the discovery of the Higgs = T VOF eoma
< - (s=8TeV, 20.3fb" T N
boson @ [ arias __H025) =1)
S 10°F B Others E
. . . . AT [ " Fake t
 especially in the diphoton analysis by CMS, where BDTs (used et Shuans
to improve the resolution and to select/categorise events) i
10F
e — sensitivity increased by roughly the equivalent of R —
collecting ~50% more data § 1.5|
1o—e—o
g8 | & of s |
.g”z.si— — BODT y classifier g 105— —— BDT y classifier g 05 L I o
'§ L FISTO Y e S 9 :_ Rule-based y selector -1 -05 O 05 1
§ 2 ~§ 3 BDT output
2 o B E
o § o ML impact also on the study of Higgs properties
) i \\ — e.g. analysis of 7 leptons at LHC complex, as they
e Q F [courtesy M.Pierini] ,
R O e decay before detection + loss of subsequently
riaos Hass (BeD riaos Hass (BeD oroduced neutrinos + bkg from Z decays
We were not supposed to discover the Higgs boson as early as 2012 * e.g. ATLAS divided the data sample into 6 distinct
kinematic regions, and in each a BDT was trained using
» Given how machine progressed, we expected discovery by end 2015 / mid 2016 12 weakly discriminating features [1] = improved

sensitivity by ~40% vs a non-ML approach

We made it earlier thanks (also) to ML

[1] JHEP 04 (2015) 117
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High-precision tests of the SM INFN

C
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CMS and LHCb were the first to find evidence for the BO,—u+u- decay with a combinead
analysis [1] (as rare as ~ 1 / 300 billion pp collisions..)

Mass distribution of the selected BO — u*u~ candidates with BDT > 0.5 [2]

| | | CS 35 Total
» BDTs used to reduce the dimensionality of the > 20 E — - BY >ty
feature space - excluding the mass - to 1 dimension, § 2 oo BY ot
then an analysis was performed of the mass spectra o225t e Cgmbinato{ial
across bins of BDT response PP e Y | By =0k
o 20 o B,
R I S
» decay rate observed is consistent with SM prediction 'g 15
with a precision of ~25%, placing stringent O 10 Fo
constraints on many proposed extensions to the SM s
I S o e

5400 5600 5800 6000

To obtain the same sensitivity without ML by e MeVIC]

LHCb as a single experiment would have required ~4x more data

1] Nature 522 68-72 (2015)

2] Phys.Rev.Lett. 118 (2017) 19, 191801 18
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Soon, ML (DL) in HEP started to seek for more advanced techniques, e.g.

e Use all the features space at its full dimensionality to train deep NN - no more manual feature engineering

— extract best from data, and do so by exploiting any architecture that might work for a given use-case (e.g. input
from CV and NLP solutions..)

19 D. Bonacorsi
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Convolutional Neural Networks (CNN) INFN

A

CNNs offer translational-invariant feature learning, robustness against noise, versatility in

application to a variety of domains

» extremely vast zoo of architectures! Primary target: computer vision

» They are based on sequences of convolutional and pooling layers, and additional tricks

HEP:

Industry: . .
Y 3D imaging in detectors, event

Large adoption in computer vision

o . classification, automation of hist
applications (e.g., selt-driving cars, ..)

checking (e.g. data quality), ...

Pythia 8, W' WZ, ¥s = 13 TeV
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[1] JINST 13 (2018) PO5011
[2] JINST 15 (2020) 12, P12012 20

[Translated] Pseudorapidity (n)

General tactics: (TPCs, CALOs..): represent your

data as 2D/3D images (even 4D w/ timing info)

— problem casting into a computer vision task

Heavy-flavour (b/c) jets in LHC
collisions @13 TeV = CMS DeepCSV
algorithm: immediate +15%
improvement in efficiency w.r.t

likelihood-based methods

D. Bonacorsi



"HEP is so different from other applications”. Is it?
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Nu: 0.090 100 cm
Nu: 0.013

Nu: 0.011

wa Nnl

Nu: 0.035
Nu: 0.021

Nu: 0.016

\:

. MicroBooNE 34“: -} |

Simulation + Data Overlay . . \

Detection of neutrinos on cosmic Detection of airports from satellite images
background event (method: CNN) (method: CNN)
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Recurrent Neural Networks (RNN) INFN
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RNN allow to handle variable-length inputs ana process time-series, accumulating ana
using together info at various times in the sequence

» Based on “recurrent neurons” (backward-pointing connections)

A variety of application in time-series of all kins, e.g. language translation,

HEP:
Classitiers capable to process variable-length
signals of different nature (tracks, particles in jets,
etc) - ample application in astro-particle physics

Industry:
handling “time series”
(audio, video, natural language processing)

y y(t-3) y(t-2) y(t'1 ) y(t) 4 'W SN:S ixc:den;e goet':’:-oc; &E:: :28.497920 GMT

n/Event / LS: g803é7/55711771/67 _

RNN-based b-tagging
able to exploit low-level

N\ &\ &\ &N features of particles in
Z 3y Z Z T jets = ATLAS mis-
e 2 identification rate
reduced by ~4x w.r.t
. Xt3) Xty X *(t / on-Ml al gyo

———— | [IT]€

1] ATL-PHYS- PUB-2017-003 and 013
2] CMS-DP-2017-005
3] Phys. Rev. D 94, 112002 (2016) 55 5. Bonacors!
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AE is a"data-specific” compression algorithm, able to reduce dimensionality and extract
"the juice” of an input

» a feed-forward (un/self-supervised) NN capable to encode the input into a reduced-dimensionally
representation (“latent space”) and decode it in output

AEs in Industry:
dimensionality reduction (like PCA),
clustering, denoising, ... AEs in HEP:

anomaly detection (interesting events are those
* - Encoder Decoder - Q

Input Output

whose decoding in output is distant from the input,
according to a given metric

VT i _ -1 -/
\\ / \ /H\\ - Cod - /H\ / \ //
\ // \ / \ -~ > ” / \ / \\ / ‘-—"—-____ _-_---°"-—
\ AN = VA AN . BN / -
/ \ \ / / \ = "I
\ K A L N S Encoder Decoder
/ \ / \ /7 \ /N / \ / \ "l
/ \ / \ ./ / - ~ \ L / \ / \ - ~—
/ \ / \ P A / \ / \
/ R 8 \
\ /! -~ ~>No N /
/’ A - I N \\
L= IR
- Y o - Y : | ‘ .F | ‘ . h . . 1 . I
e e Potentially, a powerful tool to discover new physics in a “unsupervised” manner
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(V)AE per "new physics mining” - at LHC and beyond

IN-N
(

A Variational AE has been introduced (CMS) tor “new physics mining” [1]
* Training on known SM processes, build threshold to identity “anomalous” (i.e. interesting: BSM?) events
» Treat them as outliers, save them (no trigger kill!), build a catalog for further inspection

* Model-independence: training not dependent from specific new physics signatures = assumptions-free

* Might be complementary to classical methods, which are i.e. model-dependent hypothesis testing

» Recurrent topologies in the catalog might inspired focussed searches, as well as standing as input
towards building new theoretical models

» Target (not easy): up to the trigger level.. and in production!

DISCLAIMER: at the threshold between discriminative Al anad generative Al ...

[1] JHEPO5 (2019) 036

24 D. Bonacorsi
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A generative algorithnm, based on an architecture
with 2 NNs, a generator G and a discriminator D,

which compete —
» G creates images from noise, D classifies them real vs fake |
. . . -~ ———
* Once trained one against the other, G pursues its goal \
which is to confuse D, and in the process it learns how to 5

creare tfake but very realistic images

Industry:

image editing, data generation, security, .. HEP:
Simulate the detector response at

reduced computational costs

== \r .
.."’.—“

_'Qhr“‘ J; . .u
SRR

‘ﬂ“ ,

- T 7:;
\ : 3_/ . d ; #1 ‘ {

[1] Phys.Rev.D 97 (2018) 1, 014021

25

Generative Adversarial Networks (GAN)

Real
Samples
i ) , |
—*de D o
; >, Correct?
g - - 3 Discriminator ‘
o /
G ’
c Generated
enerator Fake
N 7 J/ Samples

. Fine Tune Training

.........................................................................................

CaloGAN, 5

FastSim techniques

to simulate 3D showers in multi-
layer ECAL with GANSs: can learn
and generate the reconstructed

calo images
expensive G

with no need to use
EANT and RECO

expensive cycles..
— 10k faster (still reliability is an
issue, though)
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Data sparsity and point clouds INFN

HEP handles high sparsity datasets (not a HEP-only
Issue..)

» Granularity and occupancy in HEP sensors

» Population of stars and galaxies in the cosmos

* Molecular description in computational chemistry

3D semplification

Abstract space with coordinate of sparse elements, each

characterised by an array of features, a set of arrays as a
function of event/run, ...

More adequate representation would be a “point cloud”, TR L ST e
and best approach might be not (HEP-)traditional TR e il

R .

- R R .

* e.g. EM shower = E deposited in active volumes of an ECAL : R TERE r
b A

' r O i L Dt
* Need to be open-minded towards methods not tamiliar (so far) B A i SRR e L
. g e ..........:... . :-:.:. :-:.:' : :-.: :_ .'.:_'.f;-‘:.°'"-.". ..: ::.."_,-' . :.?':."::.-°‘ :-.11 ot’ ::E'.. .,
to the HEP community LA

......

* e.g. problems contfigurable in extraordinarily similar ways as
how social media datasets are treated (!)

26 D. Bonacorsi



Graph Neural Network (GNN) IV

Think of a CNN acting on its input features (pixels). Its power
resides also on a “regular-array dataset” paradigm

» Data represented as sets of dense arrays/tensors, with intrinsic metrics

In a sparse representation, we need a metric that defines
proximity in an abstract space of features

How? Migrating from”“datasets” to “graphs”

e Connect elements of a dataset and train a NN to learn which are the
relevant connections

GNN — build a data structure, (V,E) with V=vertex and E=edges,
choose possible types of vertices (if no prior, one builds a fully-
connected graph), etc

GNNs may well grow as an actor in DL applications in HEP

27 D. Bonacorsi



ML/DL in HEP

What next?
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From numbers/images to text: towards (L)LMs e

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

Language Models (LM) are generative tokens omm—— ‘_
(in the way we use them) models that token embedding ' '

e .. but to handle text, one needs to code

characters and words, text into numbers/

VeCtorS..

e ..and in a semantically relevant way ++
| Ms handle text as a sequence of
symbols (“token”), mapped to
multidimensional vectors Input| [FHEEE —[OEEE

(“embedding”) and process them
- Does Anna : :
through a hierarchy of levels e

 NNs are good with data that are natively
numbers and vectors II

token embedding
(4 dimensional)

tokens

Similar words need to be close-by in the
vector space of their representation

29 D. Bonacorsi
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To make NNs effective on text, you need
to map tokens into vectors, via some
effective embedding (i.e. “vectorial
representation”) techniques that
preserve semantic relevance (i.e.
"distance”)

* Not so different in our brain? (e.q.
synonyms are somehow grouped together)

— Tokens semantically similar must be
mapped to close-by vectors

D. Bonacorsi
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First Generation (2010-2015) of LMs: Recurrent Neural Networks (RNNs), such as LSTMs,
trained on a text corpus to understand language structure

* they process text as a sequence of symbols (tokens)

* tokens are mapped into multidimensional vectors (embeddings) and processed through a hierarchical
structure of layers.

Current Generation (2018-today): so-called “modern” Large LMs (LLMs) - moving from
RNN architecture to large-scale transformers

* improved tokenisation (see example below + multi-language + multi-domain, ..)

» “large-scale” — training on increasingly (massively!) larger text corpora (including e.g. code bases..)

The coloured blocks show how this text has been tokenized, by the GPT-3
tokenizer.

31 D. Bonacorsi



Transformers &
Transtormers are the reterence model for LLMs (the T in GPT)
e a DeepNN architecture introduced by Google (Brain) in 2017

« key element is the self-attention layers, which relate words within a sentence to better capture their semantics
Autoregressive generation
Same weights in all columns
The \ Dﬁl:l:l I:EFD D?ZI Output
ball - :

Into | | ‘ |
e s (S5 SHERH SRS

went

right T T T T
. SO HESHE HES H R
90eth Input EETD] EI:IEEI IZEIED

minute Prompt

Lower part, here comes the prompt. Pass
through layers, including attention. Upper part:

Transformers are not inherently generative models, but they become so when here comes the generation of the tokens of the
: . : answer. All in a autoregressive mode.

used with sequence-to-sequence architectures for prompt completion through

autoregressive generation (one token at a time)

32 D. Bonacorsi
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Every

+Attention
contains millions
of neurons!

Recent models:
>100 layers

A

Incredible horizontal
and vertical scalability

Attention

MLP

Attention

The

encoding

token 1

ball

Transformers

Residual stream

Attention Attention

MLP MLP

encoding encoding

i )
token 2 token 3

went into the net right at

Recent models: >100k tokens

33

the

Can read from the

. . residual streams of all
Attention Attention orevious tokens

90th

Decoder only (es. GPT series)

Attention

MLP

4 Attention

encoding

I
token T

minute
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2 The zoo of big animals (LLMs) only INFN

GPT-3 (OpenAl, 2020)..

e GPT = Generative Pre-trained Transformer

.. from which ChatGPT (OpenAl, 2022) was derived

* trained on approx. 45 TB of text (equivalent to over 2'000x Wikipedia)

 estimated training cost: $4.6M (initially.. now, for most recent models = O(100M$))

2023: OpenAl releases GPT-4

* significantly superior to ChatGPT, it is considered state-of-the-art

* technical details unclear, but estimated to be an order of magnitude larger in terms of parameters and depth wrt
previous models

* one data is known, though: in 2022, OpenAl reported an operating loss of $540M ($416M in computing costs)

Other major ICT players release/integrate LLMs, including:

* Gemini (Google), Claude (Anthropic), LLaMA (Meta), DeepSeek, .. — some appears as open source

Dec. 2023: Google Gemini Ultra's training cost: approx. $191M

34 D. Bonacorsi



Natural Language Processing applications INFN
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Significant improvements thanks to the use of LLMs:
* Machine translation: e.g. Italian to English
» Text classification: e.g. sentiment analysis

 Named Entity Recognition (NER): extracts relevant information from unstructured texts (e.g. vital signs
from medical records)

 Summarisation: e.g. generating document summaries
* Question-Answering: multi-domain and multilingual tactual knowledge

 Digital assistants: e.g. Amazon Alexa, Google Assistant, Apple Siri

And in science? Well, sky is the limit!

35 D. Bonacorsi
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Observations in astronomy:
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[ credits: D. Kostunin, A. Alkan, A. Chaikova, V. Sotnikov et al. ]
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Event sessoge ™~ s * 220918A and detection of a new gamma-ray source
: Fermi J0502.5+0037
‘:'( -II(
-Fage
Ew on 19 Sep 2022; 20:50 UT
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Ale
2 rection refined to:
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——— . ‘ J2000
sutring sergy (in Tew) v ript | J2008
AfULer error of the Seerce, Statistical esty. (S0% concaissent) instruments to help identify a possible astrophysical source for the candidate neutrinc
§ te"dey tat. e¢ 5yS e of the instrumented volume, larger than usual error regions are found As 2 result,
b uncertainty region The nearest gamma-ray source 1s 4FGL JO505.6+0415 at RA:76.40,
ent position). It i1s also noted that TXS 05064056 1s located within the 98% uncertaint
peter neutring detector operating at the geographic South Pole, Antarctica. The IceCube
roc@icecube wisc.edu
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Description: Referred to by Alel #: 8706,8718, 8783, 8789 On Jan 14, 2016, the Large Area

Telescope (LAT) observed strong gamma-ray emission from a new source. The best-fit AN exam ple text based on
location of this gamma-ray source (RA=8.91 deg, Dec=61.52 deg,J2000.0) has a 95%

containment radius of 0.08 deg. This source is not in any published LAT atalog and in the ATel Messages

past has not been detected by AGILE or EGRET. The closest candidate counterpart is the (astronomerste | edram .org)

radio source [87GBI00S25 274611352

M object name; the type of the object or physical phenomena; event type

Goal is to build an information extraction system, i.e. recognise a list of predefined concepts (celestial objects,
astronomical facilities, physical properties, people, organisation etc.) from a text and produce LLM-generated event

summaries based on the parameters of each event

obs Telescope [wight - [ob]
A Cycle 6 ALMA proposal for 4 epochs of stand-alone Atacama Compact Array Band 7 observations of variables in Serpens identified

Survey l'uson G_rant
by the JCMT Transient Survey has been accepted (Pl: Logan Francis, project code 2018.1.00917.S ). These observations will : ..
From entity recognition...

|Wavelength)

complement results from the contemporaneous Transient Survey by observing at 850 \u03bc m with a resolution of 38 (compared to

tel !

the 146 resolution of the JCMT), sufficient to reach the scale of the inner envelopes (\u223c1500 au) of protostars in Serpehs.

coreferring_to

_C location_of
MASTER OT J710.5440.86-39131§6 - PSN in PGC600519 ( 2.9"E,7"N ) MASTER-SAAOQO auto-detection system ( Lipunov et al. , " MASTER Global Robotic Net " , Advances in Astronomy , 2010 , 30L )
o o o to Semantlc relatlonShlp : location_of \—coreferﬂng_to \@
extraction discovered OT source at ( RA , Dec ) = 10h 54 m 40.86s , -39d 13 m 195.0 on 2016 - 10 - 08 02:56:46.019UT with m_OT=16.5 . This PSN is in 2.9"E,7"N from the center of PGC600519 and is seen on 8
images . We have reference image without OT on 2015 - 02 - 27 22:35:30UT with m_lim=19.8 Spectral observations are required The discovery and reference images are
coreferring_to
d Llocation_or

http://master.sai.msu.ru/static/OT/MASTEROTJ105440.86-391319.0.jpg. MASTER OT J160918.30 - 333456.7 discovery - bright possible dwarf nova outburst , ampl&gt;5.4 m MASTER-SAAO

D. Bonacorsi
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A 7B LLM fine-tuned on Cosmology papers and textbooks L'f'?
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"Cosmosage”, a general-purpose Al-assistant specialised in answering questions
about cosmology (based on Mistral-7B-v0.1)

* training dataset: arXiv papers, astro textbooks, physics textbooks, wikipedia

user: .
What came before the Big Bang? .
user: Detailed
Instrumentation

cosmosage: . o . .
The concept of what came before the Big Bang is a topic of debate and speculation | | N DMux, the SQUID is nulled via Digital Active Nulling at
MHz frequencies. How is the SQUID kept nulled at low

In the realm of cosmology. The Big Bang theory states that our universe began 5
approximately 13.8 billion years ago from a singularity, an infinitely dense and hot ‘;r:g:‘ir;gé-e.

point. At this point, space, time, matter, and energy were all created simultaneously. | ,
Scientists cannot explain with any certainty why the Big Bang happened, so any In DfMux, the SQUID is kept nulled at low frequency by using a low-frequency flux-
locked loop (FLL). The FLL is a feedback system that maintains the SQUID in its

speculation about what came "before" is pure theoretical musings. The Big Bang is D , | =
widely accepted as accounting for everything we have been able to observe about nulled state by adjusting the input current to cancel out the flux signal. This is
necessary because the SQUID is sensitive to magnetic fields, and the magnetic field

the universe, but it doesn't explain itself. There are many theories and models that , , ,
generated by the input current can change the bias flux, causing the SQUID to lose

attempt to explain the pre-Big Bang universe, such as the cyclic model, the | o , =
ekpyrotic model, and the string theory landscape. However, these theories are stil its null state. The FLL helps to maintain the null state by continuously adjusting the
iInput current to counteract any changes in the bias flux.

under development and have not been proven to be accurate descriptions of the : : : LS o .
actual events that took place before the Big Bang. ChatGPT 3.5 says [... passive nulling ... without requiring active intervention...]
ChatGPT 3.5 gives a similar quality answer. which is exactly the wrong answer.

user: Data analysis user: Current cosmological
Why does a cross-spectrum not suffer from noise bias? principles What is the current best measure of the optical depth parameter constraints
cosmosage: to reionization?

An auto spectrum suffers from noise bias because the noise is correlated with itself, cosmosage:

leading to an overestimation of the signal. In contrast, a cross spectrum does not The current best measure of the optical depth to reionization is T=0.054+0.007, as
have this noise bias because the noise in different maps is uncorrelated. Therefore, determined by the Planck Collaboration et al. (2018). This value provides strong
Cross spectra are often preferred for cosmological analysis because they provide an evidence for reionization at high redshift and helps constrain models of cosmic
unbiased estimate of the signal. reionization.

ChatGPT 3.5 says [... cross-spectra are less prone to noise due to cancellation ChatGPT 3.5 talks about future measurements but does not mention a numerical
effects ...] which is incorrect. value or even mentions Planck.

[ credits: Tijmen de Haan ] 38 D. Bonacorsi
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A LLM-based Al-assistant for a CERN experiment

"ChATLAS"” a prototype LLM project in a LHC experiment (ATLAS) at CERN (as of end
2023)

Data gathering part is interesting (data chunking and data retrieval not described here)

» Docs: twiki (>2k), sw docs (>500), e-groups/mails archive (>10k), indico meetings’ agendas incl. attached
slides and minutes (>440k), Mattermost, Jira tickets, experiment’ papers and internal notes (>66k)

» Either HTML or scraped into markdown

Many open challenges:

* highly heterogeneous data

* ensure that collaboration DBs are accessible and exportable; websites should live on a git repo; pubs
should be saved as latex, and compiled separately; discussion forums should have anonymisation

options... Estimates indicate that this would have saved ~1 yr of data wrangling

 Hallucinations are a real problem

* Not many gpu-hrs, but many expert-hrs, needed for any high-quality fine-tuned Al assistant

[ credits: Cary Randazzo ] 39 D. Bonacorsi



- Educational Outreach with Al-Assisted CERN Open Data v~

UNIVERSITA DI BOLOGNA

open

CERN Help About »

e
Explore more than five petabytes /
of open data from particle physics!
@
search examples: collision datasets, keywords:education, energy:7TeV /

Explore
datasets ATLAS
. o
software ALICE
environments CMS
documentation L HCb
OPERA
PHENIX

Data Science

https://opendata.cern.ch/

40 D. Bonacorsi
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Get draft code for it

Define a training goal

sorted_indices = np.argsort(event_E)[::-1]

len(sorted_indices) <

ATLAS Open Data Higgs analysis guide idx1, idx2 = sorted_indices[:2]

By Philipp Gadow &
El, E2 = event_E[idx1], event_E[idx2]

etal, eta2 = event_etal[idx1l], event_etal[idx2]

Guides on Higgs boson data analysis with ATLAS Open Data.

phil, phi2 = event_phi[idx1l], event_phi[idx2]

What is the Higgs boson and how can | measure its m... Show me how to plot the invariant mass distribution ...
OO P
How do | read ROOT files for my analysis? How can | fit the mass peak of the Higgs and how can...
@ I\/lessage ATLAS Open Data Higgs analysis guide... @ I\Aessage ATLAS Open Data Higgs analysis guide...

ChatGPT can make mistakes. Consider checking important information. ChatGPT can make mistakes. Consider checking important information.

Reach the training objective
Invariant Mass Distribution of the Two Highest Energy Photons

Get explanations, retine, learn

you are calculating the invariant mass using these ene

B Diphoton invariant mass

GeV (gigaelectronvolts), this could be the source of discrepancy leading to an unexpected range or 6000 -

empty plots.

To fix this, you should convert the energies from MeV to GeV before performing the invariant mass 5000 -

calculation. This can be done by dividing the energy values by 1000:

4000 -
python () Copy code "
§
El, E2 = event_E[idx1] / , event_E[idx2] / b 3000 -
Incorporate this conversion into your code where you define "E1" and "E2" and then plot the 2000 A
invariant mass distribution again. This adjustment should help @
1000 -
@ '\/Iessage ATLAS Open Data Higgs analysis guide... @ 0
0 25 50 75 100 125 150 175 200
ChatGPT can make mistakes. Consider checking important information. Invariant Mass (GeV)

[ credits: Paul Philipp Gadow et al ]| 41 D. Bonacorsi



1 -
LM for particle accelerators N

A variety of projects..

Plenty of work in progress on LLMs, showing potential towards natural language driven autonomous particle
accelerators

« Attempts with GPT 3.5 Turbo, Megadolphin, Vicuna 7B 16K, Mistral 7B, Mixtral 7x8B, Starling-LM, GPT 4 Turbo, GPT4, Orca 2 7B,
Orca 2 13B, Llama 2 70B, Falcon 180B, ..

« Constant seek for (and tests with) better models, better prompting, ...

GAIA (@DESY): a General Al-assistant for Intelligent Accelerator Ops

« Experimental “ " defined as a collection of high-level “actions” in a Control System
e.g. for managing machine pre-sets

» Exploring a LLM (mixtral:8x7b-instruct-v0.1-g8_0 with 32k context size), agent implemented in

Python using the langchain module, prompting based on ReAct (as a combination of chain-of-
though prompting and information injection via "actions”)

» EPA = Efficient Particle Accelerator project
CERN
\\_/ * AccGPT = accelerating science via a chatbot for knowledge retrieval for CERN

specific content

[ credits: F. Mayet, J. Kaiser. F. Rehm et al ] 42 D. Bonacorsi
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Different from supervised learning

* No need to label anything! | have plenty of text, so..

Self-supervised learning: masked portion of text
and sliding windows as training tactics

 take a large text (easy to find..) as training set, and
assume (for simplicity) tokens = words

» fixed-length sequences (e.g. 10 words) are extracted
from the long text

* the model is trained to predict the 11th word given the
first 10 (no labelling required)

43

| LMs training: self-supervised

INFN
C
1{Nel Nel Nel Nel Nel
2|lMezzo |mezzo |mezzo |mezzo |mezzo
3|del del del del del
4/cammin [cammin [cammin [cammin [cammin
5| di di di di di
6/nostra |nostra |[nostra |nostra |nostra
7|vita vita vita vita vita
g8lmi mi mi mi mi
9|ritroval |[ritrovai |[ritrovai |ritrovail |[ritrovai
10|per per per per per
una una una una
selva selva selva selva
13|0scura |oscura oscura |oscura
14/ché ché ché
15|la la la la

: words given in input
RED: word to predict

D. Bonacorsi



L LMs training: next token prediction INFN
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Different from supervised learning nostra |nostra

vita vita

nostra

* No need to label anything! | have plenty of text, so..

Self-supervised learning: masked portion of text
and sliding windows as training tactics

* take a large text (easy to find..) as training set, and
assume (for simplicity) tokens = words

» fixed-length sequences (e.g. 10 words) are extracted
from the long text

O [0 ([ N[O (U | W IN |-

(WY
o

* the model is trained to predict the 11th word given the
first 10 (no labelling required)

N =
N | =

(WY
W

After training, the model can be used tor
autoregressive text generation BLU becomes the new GREEN.

and the window slides..

(WY
I

— "next token prediction” mechanism

414 D. Bonacorsi
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Selt-supervised training is based on this “next token prediction”:

Criticised as being too simplistic

* |t does nothing really sophisticated, indeed: it just relies on the statistics that |

have in languages..

Actually, this is one of its main key strengths (e.g. |.Sutskever [1], 2023)

* Evidences that it enables the model to learn, and not based only on statistical

oroperties of language...

... and it also forces the model to make accurate predictions even in
mathematics, logic, coding, and common sense reasoning, where - in the
absence of an oracle or exhaustive memorisation of all cases - correct
predictions are only possible by learning an underlying model of the

problem

Additionally, the simplicity of the approach does not impose
constraints on the learning/modelling, hence leaving the LLM free
to choose the most suitable strategy for different problems

[1] llya Sutskever (OpenAl) interview, 2023 (youtube) 45

Beyond next-token prediction IV

3+2=7

| have seen this pattern plenty
of times in training

— 5

333 +2=7

| have NOT seen this pattern
many times.. nevertheless..

— 335

Impossible to show all cases in
training — it just extrapolates!

D. Bonacorsi


https://www.youtube.com/watch?v=YEUclZdj_Sc

| arge Language Models and “emergent abilities”

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

"Emergence”: a sudden appearance of a
novel behaviour (often referred to as a small changes to the quantitative

parameters of a system make huge
changes to its qualitative
behaviour

"phase transition”)

e Scaling LMs — hit a series of critical scales at
which new abilities are suddenly “unlocked”

Ability

* not directly trained to gain such abilities: they
just manifest rapidly and in unpredictable ways

J
® @ €9

» problem solving (math, logic, quantitative reasoning), common sense and social behaviour, (controlled)
generation of texts, images, sounds, .. ; ability to write, correct, and execute (pseudo)-code

Examples:

More — Sparks of AGI: early experiments with GPT-4, Mar 2023, arXiv:2303.12712 46 D. Bonacorsi
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| arge Language Models and “emergent abilities”
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Animation here - will not be visible in the PDF

47 D. Bonacorsi



Algorithmic progress in LLMs
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"
INFN

C

The compute required to reach a set performance threshold has halved approx. every 8

months, with a 95% contfidence interval ot around 5 to 14 months

» Algorithmic improvements faster than hardware gains per Moore’s Law!

/V

L Oss

Log perplexity O Wikitext

O Penn Treebank

5.5

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

LBL

O

o8

LSTM-300units

|
RNN+weight
noise+dynamic eval

Large regularized LSTM

Transformer (Adaptive Input Embeddings) =

GPT-2 (762V

GCRN-M1, dropout

GPT-2

LSTM

Turing- NLG
GPT3-6.7B

(1542M)

Gopher (7.1B)

Pythia-160m

Chinchilla / =

LLaMA-65B

Training FLOP
L /

‘ LLaMA-3SB

\
1
|

10

Our result

Compute

2012 2014 2016 2018 2020 2022 2024

Will we run out of data? compute? networks? ... or energy?
. and algorithms will continue to get better — also it/when written by Al itself..

Algorithmic progress in LM, Mar 2024, arXiv:2403.05812 Credits: M. Schwartz
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] [ ] o II o o ’l
Biological vs Machine “intelligence INFN
Mammalian biological brains Paremeters LLMs
Open Al 2020 ,’,
. e 175 billion g @
Cat brain Human brain . & ‘
PT4 Open Al GPT4
GPT-3 ,’ 170 trillion parameters
1012
- BERT y
0.760 billion neurons Google 2018
10 trillion synapses 94 million coogle 2022
N - G.%.gle 540 billion
80 billion neurons - e B%
150 trillion synapses - fmg

] ] | 1 1 1'51 bi" on 1 1 ] 1 ] | 1
l l -10 -5 0 5 10
Years

Current LLMs:
size of GPT 3.5 size of GPT 4 « Parameters: roughly the same nb (104) as the human brain
@ * .. but more compute: brain (106 FLOPS) over a lifetime (100 years) = 1022 ops, to

be compared with LLM training time, around 102> ops

€] o BXC

+ And it consumes more.. Red Al is a serious issue!

Credits: M. Schwartz 49 D. Bonacorsi
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Biological vs Machine “intelligence INTN
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Measuring “intelligence” by number of neurons (or computational units):

e biological = growth by a factor 2x in 1 million years

» machine — growth by a factor 10x in 1 year The intersection - when machines

1022 -

and biology have comparable
"intelligence” - is ~now

Homo sapiens

Homo erectus (150 trillion synapes)

101~ (70 trillion synapes)
; Mouse
o (900 billion synapes) (S V0 T aeeeTTT
s | VIR RTRTSYRERESE o () N1t | _..-
G e L
1) « L m =
= - Homo sapiens
a 10% ) égn:)erectus .
O - Chimpanze&s gpTa Rt
a /’% 1015 ,,/,//
= - PalLM % """""""""" L e
> =" = W’ . .
s [ Mouse GPT3 2 o1 Lt even sub-exponential grown will
diverged = s
1010 - - 5 I I
100 million years ago SERT T I soon be superhuman !
GPT?2 - Em6 | o |
ELMo -10 -9 0 5’ 10
yoors - AGI around the corner??
106~
| | | | | I | | | | , | | | | ] | | | | l
~100 -50 0 50 100

Millions of years

Nature Reviews Physics, 4, 741-742 (2022) Credits: M. Schwartz 50 D. Bonacorsi
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Article | Open access \ Published: 10 February 2024

The current state of artificial intelligence generative
language models is more creative than humans on
divergent thinking tasks

Kent F. Hubert ™ Kim N. Awa & Darya L. Zabelina

The emergence of publicly accessible artificial intelligence (Al) large language models such as ChatGPT
has givenrise to global conversations on the implications of Al capabilities. Emergent research on Al
has challenged the assumption that creative potential is a uniquely human trait thus, there seems to
be a disconnect between human perception versus what Al is objectively capable of creating. Here,

we aimed to assess the creative potential of humans in comparison to Al. In the present study, human
participants (N=151) and GPT-4 provided responses for the Alternative Uses Task, Consequences Task,
and Divergent Associations Task. We found that Al was robustly more creative along each divergent
thinking measurement in comparison to the human counterparts. Specifically, when controlling for
fluency of responses, Al was more original and elaborate. The present findings suggest that the current
state of Al language models demonstrate higher creative potential than human respondents.

Nature Sci Rep 14, 3440 (2024) 51

"but physics requires creativity..” (7

GPT41
GPT42
GPT43
GPT44
GPT45
GPT46
GPT47
GPT48
Control 1
Control 2
Control 3
Control 4
Control 5
Control 6
Control 7
Control 8
Control 9
Control 10
Control 11
Control 12
Control 13
Control 14
Control 15
Control 16
Control 17
Control 18
Control 19
Control 20
Control 21
Control 22
Control 23
Control 24

) N

GPT4

Fig. 3. Originality National Percentile Ranks (GPT-4 and Control Group).

>

Torrence lest score

GPT4 more creative than 99% of humans..

D. Bonacorsi
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Can LLM help “consultants”?

0.8 B GPT + Overview

B GPT Only
0.7 mmmm Control

Quality

Yes, and by a lot!

Navigating the Jagged Technological Frontier (...), Harvard Business School, 2023)

Score on Task

"but we are better than machines..” (?1) INFN

O - N W b U O~ N
I I I I I |

Al-assistants as skill-levellers

52

QB@E . %ﬂ]@&
o 6 -
5 -
4 -
5.79 3 - 6.06
y
1 -
0 |
Bottom-Half Top-Half Skilled Participants

Skilled Participants

Average consultants using Al perform as good as
best consultants

— towards “augmented intelligence”?

D. Bonacorsi



Skill-leveller, indeed? What about HEP theory? INFN
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Can Al be a skill-leveller (or more) for e.g. HEP theory?

In the past, we made progress Are we even making forward progress

depsite many dead ends anymore?
Credits: M. Schwartz, Harvard and NSF |AIF, -
elaborating on hard theoretical physics problems ‘ :J *
and Al, at EUCAIFCon (Amsterdam, 2024) *
g goal ?{ §%3;
Humans like to Humans hold few
"visualise”, as concepts in : A computer memory
we have eyes. | working memory at 28t¢ — H¢ can handle much
FOF a mach.m.ef 2D once, and like e _ T more concepts at
is not special: it “simple and Uy MV  once, and can

can easily visualise " -
y elegant” equations understand systems

in d dimensions not governed by

— project in 2D . .
simple equations

Credits: M. Schwartz 53 D. Bonacorsi
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We are a training set for machines '
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Current state-of-the-art Al can answer questions / (~) solve textbook problems
How? — via training on huge datasets of answered questions / solved problems

By whom? — Us! we answered and solved all that, we actually generated its training set

* (and we do the same for ourselves)

E.g. LLMs:

e |earn from our training set

e Human feedback helps refine
the models

e Machines generates data and
refines its models

Humans and machines seem very close
to be not so different..

54 D. Bonacorsi



(even beyond) augmented intelligence INFN
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Maybe the problems are just too difficult (for us)?

e Example: could a cat ever learn to play chess? Humans have limits too.. e.g. biology

Suppose a machine understands the theory of everything but we don’t
* e.g. can calculate the fine-structure constant from scratch s this what we want? | guess not.

 e.g.can preduct the endpoint of black-hole evaporation

’ . 7 R o 2 . . . . . ?
i | NS * The authors of Popular science books What it this is the best we will get”

<A
EETTN o _ ) H | % |
¢ L UEA Y e J - r— | S B
B34 B \
) iliiehe ol L. I N
PR,y h
- WO I R | ‘
’ \ < :/ i s

understand the details; we just get the general idea What if Al could make us optimistic

| don’t understand the proof of Fermat’s last theorem for a substantial progress in HEP

* I'm glad that somebody does theory in our lifetime, while it
* Does it matter that the person is human?

S i an enpeaing combineton of

- ’ . X ¢ T N S

~ ; dwilyan: w Fisis wliwn 1 0\ N
Wi L - -
o3 ’ of 3L 0t Ny poves A A= -
.
~—The New ¥ors Beraw of firaks ¢ » - A
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would be largely unprobable
without Al?

HISTORY B/{ANGgEENE%

OF TIME

If a machine understands fundamental physics it can

1. Dumb it down so we can get the general idea '
2. Find practical applications Would you give Al the keys of

HEP research? And of ALL

scientific research??
Credits: M. Schwartz 55 D. Bonacorsi
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f you have a definitive answer to the last question..

.. drop me a mail before | run the Al masterclass later today! = daniele.bonacorsi@unibo.it

Fa , et KI o 4 N

|

Al Masterclass N

Daniele Bonacorsi (*), Simone Gasperini (*), Luca Giommi (**), Marco Lorusso (**)

cx((-"'

—

(*) University of Bologna / INFN, Italy ' W' ISGC 2025 - Taipei, Taiwan
(**) INFN CNAF, Bologna, Italy & .

70\
d 4 4 4 4Py,

y

L7 Today starting at 11am,

three 1h30 slots,

this same auditorium

Thanks for the attention

56 D. Bonacorsi
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