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ML-based publications in science

D. Bonacorsi3
B. Blaiszik, “2021 AI/ML Publication Statistics and Charts”, 10.5281/zenodo.7057437 

What is this ramp-up?! 

And why at that time?!



AI vs ML vs DL
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Objective: extract “actionable insight” from (big) data 

Choose an algorithm, perform its “training” on data (”
attributes” vs ”features”) to extract ”parameters” with 
optimisation techniques (e.g. “gradient descent”) that 
minimise the errors of the model on the observations (“cost 
function”), in a process governed by “hyper-parameters” 
tuning 

Result: a ML model to be applied to previously unseen data 

→ “data-driven modelling”

dagli Anni 50 dagli Anni 80 dal ~2010

AI = Artificial Intelligence 
ML = Machine Learning 
NN = Neural Network 
DL = Deep Learning



Neural Networks
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Biological Neural Networks

Artificial Neural Networks

Basic 
elements:



A brief history of NNs

D. Bonacorsi6

First models of artificial neuron (McCulloch, Pitts, 1943) 

• Neuron behaviour (i.e. info passing) are determined 
by “weights”: initially randomly set, they are 
modified during “training” 

Towards neural networks: “Perceptron” (Rosenblatt, 1958) 

Multi-Layer Perceptron (MLP) 

• Groups of neurons organized in layers (input layer, 
output layer, and one or more intermediate 
“hidden” layers, each with one or more neurons) 

Back-propagation algo (Rumelhart, Hinton, Williams, 1986)  

• an effective technique to train them (i.e. setting 
weights’ values) 

From shallow NN to Deep NN → Deep Learning



E.g. “supervised learning”: ML training vs inference
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AI’s past winters and current spring

D. Bonacorsi8

Past “winters” of AI 

• ’60: shallow NN hard to train 

• ’90: Support Vector Machines (SVM), Boosted 
Decision Trees (BDT), .. 

• 2000+: advanced deep NN architectures 

Current “spring” explainable by: 

• “Big data” 

• Technology + ML research 

• (cloud and accessibility)



ML-based publications in science

D. Bonacorsi9
B. Blaiszik, “2021 AI/ML Publication Statistics and Charts”, 10.5281/zenodo.7057437 

Extremely large 
adoption in incredibly 
short times, towards 
high level of 
pervasiveness

All this may explain the rise 
as from the initial plot..



Pervasive ML in HEP [1/3]
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ML in data acquisition and trigger  
• Bkg and trigger rate reduction  

• Signal specific trigger paths 

• Anomaly detection in data taking 

• Unsupervised new physics mining

E.g. LHC experiments’ trigger is a strong “driver” for 
high-performances ML applications 

• Next-gen trigger systems → real-time reconstruction → real 
time analysis 

Challenge is the trade-off between algorithmic 
complexity and the performances achievable under 
severe time constraints in inference

[ CMS - credits: M.Pierini ]



Pervasive ML in HEP [2/3]
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ML in Event Simulation 

The production of simulated events (full/fast 
simulation) is extremely intense from the 
computation standpoint (up to the point it 
might impact the physics reach of the 
experiments). ML can help to reduce such load 

• Calorimeter shower surrogate simulator 

• Analysis level simulator 

• Pile-up overlay generator 

• Monte Carlo integration  

• ML-enabled fast-simulation 

• Invertible full-simulation (probabilistic 
programming, …) 

• …
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ML in Event Simulation 

The production of simulated events (full/fast 
simulation) is extremely intense from the 
computation standpoint (up to the point it 
might impact the physics reach of the 
experiments). ML can help to reduce such load 

• Calorimeter shower surrogate simulator 

• Analysis level simulator 

• Pile-up overlay generator 

• Monte Carlo integration  
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• Invertible full-simulation (probabilistic 
programming, …) 

• …

ML in Event Reconstruction 

Online/offline reconstruction might be partially 
replaced by surrogate models (approximate → 
faster) or by new algorithms (that might offer 
unprecedented performances) 

• Charged particle tracking (GraphNN, vertexing, …) 

• Calorimeter reconstruction (local, clustering, …) 

• Particle flow (GraphNN, …) 

• Particle identification (boosted 
jets, isolation, …) 

• Pileup mitigation 

• Energy regression (end-2-end, …) 

• …



Pervasive ML in HEP [3/3]
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Data: IML

ML in Data Analysis



Pervasive ML in HEP [3/3]
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ML in Computing Operations 

Application of ML to non-event (meta-)data 
might help to increase efficiency and reduce 
the need of personpower in Ops, e.g. 
automating specific tasks, developing 
intelligent/adaptive systems, ultimately acting 
on the full chain - from data collection to data 
analysis - and make it more agile 

• Detector control 

• Data quality monitoring 

• Operational intelligence 

• Predictive maintenance 

• …

Data: IML

ML in Data Analysis



ML/DL in HEP

D. Bonacorsi15

ML in HEP started by using domain knowledge to perform feature extraction/engineering 

• HEP physicists design high-level features, and send them as input to traditional ML “shallow” algorithms

“Traditional” ML



Particle id, energy resolution, and more..
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Using ML to improve the determination of particle properties is 
now commonplace in all LHC experiments 

E.g. energy deposited in calorimeters is recorded by many 
sensors, which are clustered to reconstruct the energy of the 
original particle 

• e.g. CMS trained BDTs to learn corrections using all information 
available in the various calorimeter sensors - thus resulting in a 
sizeable improvement in resolution

betterbetter

[ 2015 ECAL detector performance plots, CMS-DP-2015-057. Copyright CERN, reused with permission ]

Similarly, ML is commonly used to identify particle types 

• e.g. LHCb used NNs trained on O(30) features from all its 
subsystems, each of which is trained to identify a specific 
particle type  

• ~3x less mis-ID bkg /particle. Further estimates indicated 
already that more advanced algorithms may reduce bkg by 
another ~50%

[courtesy: M.Williams]
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https://cds.cern.ch/record/2114735


ML in the Higgs discovery + study
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ML played a key role in the discovery of the Higgs 
boson  

• especially in the diphoton analysis by CMS, where BDTs (used 
to improve the resolution and to select/categorise events)  

• → sensitivity increased by roughly the equivalent of 
collecting ~50% more data 

[courtesy M.Pierini]

ML impact also on the study of Higgs properties  

→ e.g. analysis of ! leptons at LHC complex, as they 
decay before detection + loss of subsequently 
produced neutrinos + bkg from Z decays 

• e.g. ATLAS divided the data sample into 6 distinct 
kinematic regions, and in each a BDT was trained using 
12 weakly discriminating features [1] → improved 
sensitivity by ~40% vs a non-ML approach 

[1]  JHEP 04 (2015) 117

We were not supposed to discover the Higgs boson as early as 2012 

• Given how machine progressed, we expected discovery by end 2015 / mid 2016 

We made it earlier thanks (also) to ML
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High-precision tests of the SM
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CMS and LHCb were the first to find evidence for the B0s→"+"- decay with a combined 
analysis [1] (as rare as ~ 1 / 300 billion pp collisions..) 

• BDTs used to reduce the dimensionality of the 
feature space - excluding the mass - to 1 dimension, 
then an analysis was performed of the mass spectra 
across bins of BDT response 

• decay rate observed is consistent with SM prediction 
with a precision  of ~25%, placing stringent  
constraints on many proposed extensions to the SM 

To obtain the same sensitivity without ML by 
LHCb as a single experiment would have required ~4x more data

[1] Nature 522 68–72 (2015) 
[2] Phys.Rev.Lett. 118 (2017) 19, 191801

Mass distribution of the selected B0 → μ+μ− candidates with BDT > 0.5 [2] 
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ML/DL in HEP
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Soon, ML (DL) in HEP started to seek for more advanced techniques, e.g. deep NNs 

• Use all the features space at its full dimensionality to train deep NN - no more manual feature engineering 

→ extract best from data, and do so by exploiting any architecture that might work for a given use-case (e.g. input 
from CV and NLP solutions..)

“Traditional” ML Seeking DL solutions



Convolutional Neural Networks (CNN)
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CNNs offer translational-invariant feature learning, robustness against noise, versatility in 
application to a variety of domains 

• extremely vast zoo of architectures! Primary target: computer vision 

• They are based on sequences of convolutional and pooling layers, and additional tricks

Industry:  
Large adoption in computer vision 

applications (e.g., self-driving cars, ..)

HEP: 
3D imaging in detectors, event 
classification, automation of hist 
checking (e.g. data quality), …

General tactics: (TPCs, CALOs..): represent your 
data as 2D/3D images (even 4D w/ timing info)  

→ problem casting into a computer vision task

Exa
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Heavy-flavour (b/c) jets in LHC 
collisions @13 TeV → CMS DeepCSV 
algorithm: immediate +15% 
improvement in efficiency w.r.t 
likelihood-based methods 

[1] JINST 13 (2018) P05011 
[2] JINST 15 (2020) 12, P12012



“HEP is so different from other applications”. Is it?

D. Bonacorsi21

Detection of airports from satellite images 
(method: CNN)

Detection of neutrinos on cosmic 
background event (method: CNN)



Recurrent Neural Networks (RNN)
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RNN allow to handle variable-length inputs and process time-series, accumulating and 
using together info at various times in the sequence 

• Based on “recurrent neurons” (backward-pointing connections)  

• A variety of application in time-series of all kins, e.g. language translation, ..

Industry:  
handling “time series” 

(audio, video, natural language processing)

HEP: 
Classifiers capable to process variable-length 

signals of different nature (tracks, particles in jets, 
etc) - ample application in astro-particle physics

RNN-based b-tagging 
able to exploit low-level 
features of particles in 
jets → ATLAS mis-
identification rate 
reduced by ~4x w.r.t 
non-ML algo
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[1] ATL-PHYS- PUB-2017-003 and 013 
[2] CMS-DP-2017-005 
[3] Phys. Rev. D 94, 112002 (2016)



Autoencoder (AE)
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AE is a“data-specific” compression algorithm, able to reduce dimensionality and extract 
“the juice” of an input 

• a feed-forward (un/self-supervised) NN capable to encode the input into a reduced-dimensionally 
representation (“latent space”) and decode it in output

AEs in Industry:  
dimensionality reduction (like PCA), 

clustering, denoising, … AEs in HEP: 
anomaly detection (interesting events are those 

whose decoding in output is distant from the input, 
according to a given metric

Potentially, a powerful tool to discover new physics in a “unsupervised” manner



(V)AE per ”new physics mining” - at LHC and beyond
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A Variational AE has been introduced (CMS) for “new physics mining” [1] 

• Training on known SM processes, build threshold to identity “anomalous” (i.e. interesting: BSM?) events 

• Treat them as outliers, save them (no trigger kill!), build a catalog for further inspection 

• Model-independence:  training not dependent from specific new physics signatures → assumptions-free  

• Might be complementary to classical methods, which are i.e. model-dependent hypothesis testing 

• Recurrent topologies in the catalog might inspired focussed searches, as well as standing as input 
towards building new theoretical models  

• Target (not easy): up to the trigger level.. and in production! 

DISCLAIMER: at the threshold between discriminative AI and generative AI …

[1]  JHEP05 (2019) 036
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Generative Adversarial Networks (GAN)
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A generative algorithm, based on an architecture 
with 2 NNs, a generator G and a discriminator D, 
which compete   

• G creates images from noise, D classifies them real vs fake 

• Once trained one against the other, G pursues its goal 
which is to confuse D, and in the process it learns how to 
creare fake but very realistic images

Industry:  
image editing, data generation, security, .. HEP: 

Simulate the detector response at 
reduced computational costs CaloGAN, a FastSim techniques 

to simulate 3D showers in multi-
layer ECAL with GANs: can learn 
and generate the reconstructed 
calo images with no need to use 
expensive GEANT and RECO 
expensive cycles..  
→ 10k faster (still reliability is an 
issue, though)
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[1] Phys.Rev.D 97 (2018) 1, 014021



Data sparsity and point clouds
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HEP handles high sparsity datasets (not a HEP-only 
issue..) 

• Granularity and occupancy in HEP sensors 

• Population of stars and galaxies in the cosmos 

• Molecular description in computational chemistry 

Abstract space with coordinate of sparse elements, each 
characterised by an array of features, a set of arrays as a 
function of event/run, … 

• e.g. EM shower → E deposited in active volumes of an ECAL 

More adequate representation would be a “point cloud”, 
and best approach might be not (HEP-)traditional  

• Need to be open-minded towards methods not familiar (so far) 
to the HEP community 

• e.g. problems configurable in extraordinarily similar ways as 
how social media datasets are treated (!)

3D semplification



Graph Neural Network (GNN)
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Think of a CNN acting on its input features (pixels). Its power 
resides also on a “regular-array dataset” paradigm 

• Data represented as sets of dense arrays/tensors, with intrinsic metrics 

In a sparse representation, we need a metric that defines 
proximity in an abstract space of features 

How? Migrating from“datasets” to “graphs” 

• Connect elements of a dataset and train a NN to learn which are the 
relevant connections 

GNN → build a data structure, (V,E) with V=vertex and E=edges, 
choose possible types of vertices (if no prior, one builds a fully-
connected graph), etc 

GNNs may well grow as an actor in DL applications in HEP



ML/DL in HEP

?

“Traditional” ML Seeking DL solutions What next?

?

D. Bonacorsi28



From numbers/images to text: towards (L)LMs
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Language Models (LM) are generative 
(in the way we use them) models that 
specialise in handling text 

• NNs are good with data that are natively 
numbers and vectors 

• .. but to handle text, one needs to code 
characters and words, text into numbers/
vectors.. 

•  .. and in a semantically relevant way 

LMs handle text as a sequence of 
symbols (“token”), mapped to 
multidimensional vectors 
(“embedding”) and process them 
through a hierarchy of levels 

Similar words need to be close-by in the 
vector space of their representation

   Does        Anna          love

   She         loves          him



LMs: token embedding
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To make NNs effective on text, you need 
to map tokens into vectors, via some 
effective embedding (i.e. “vectorial 
representation”) techniques that 
preserve semantic relevance (i.e. 
“distance”) 

• Not so different in our brain? (e.g. 
synonyms are somehow grouped together) 

→ Tokens semantically similar must be 
mapped to close-by vectors 



Generations of LMs
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First Generation (2010-2015) of LMs: Recurrent Neural Networks (RNNs), such as LSTMs, 
trained on a text corpus to understand language structure 

• they process text as a sequence of symbols (tokens) 

• tokens are mapped into multidimensional vectors (embeddings) and processed through a hierarchical 
structure of layers. 

Current Generation (2018-today): so-called “modern” Large LMs (LLMs) - moving from 
RNN architecture to large-scale transformers 

• improved tokenisation (see example below + multi-language + multi-domain, ..) 

• “large-scale” → training on increasingly (massively!) larger text corpora (including e.g. code bases..)



Transformers
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Transformers are not inherently generative models, but they become so when 
used with sequence-to-sequence architectures for prompt completion through 
autoregressive generation (one token at a time)

Same weights in all columns

Prompt

Autoregressive generation

Lower part, here comes the prompt. Pass 
through layers, including attention. Upper part: 
here comes the generation of the tokens of the 
answer. All in a autoregressive mode.

Transformers are the reference model for LLMs (the T in GPT) 

• a DeepNN architecture introduced by Google (Brain) in 2017 

• key element is the self-attention layers, which relate words within a sentence to better capture their semantics

The 
ball 
went 
into 
the 
net 
right  
at 
the 
90th 
minute
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Recent models: >100k tokens

Recent models: 
>100 layers

Every 
MLP+Attention 
contains millions 
of neurons!

Decoder only (es. GPT series) 

Transformers

Incredible horizontal 
and vertical scalability !

The      ball     went    into    the    net     right  at     the     90th     minute



The zoo of big animals (LLMs) only
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GPT-3 (OpenAI, 2020).. 

• GPT = Generative Pre-trained Transformer 

.. from which ChatGPT (OpenAI, 2022) was derived 

• trained on approx. 45 TB of text (equivalent to over 2’000x Wikipedia) 

• estimated training cost: $4.6M (initially.. now, for most recent models → O(100M$)) 

2023: OpenAI releases GPT-4  

• significantly superior to ChatGPT, it is considered state-of-the-art 

• technical details unclear, but estimated to be an order of magnitude larger in terms of parameters and depth wrt 
previous models 

• one data is known, though: in 2022, OpenAI reported an operating loss of $540M ($416M in computing costs) 

Other major ICT players release/integrate LLMs, including: 

• Gemini (Google), Claude (Anthropic), LLaMA (Meta), DeepSeek, .. – some appears as open source 

Dec. 2023: Google Gemini Ultra's training cost: approx. $191M



Natural Language Processing applications
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Significant improvements thanks to the use of LLMs: 

• Machine translation: e.g. Italian to English 

• Text classification: e.g. sentiment analysis 

• Named Entity Recognition (NER): extracts relevant information from unstructured texts (e.g. vital signs 
from medical records) 

• Summarisation: e.g. generating document summaries 

• Question-Answering: multi-domain and multilingual factual knowledge 

• Digital assistants: e.g. Amazon Alexa, Google Assistant, Apple Siri 

And in science? Well, sky is the limit!



LLMs for Multimessenger Astronomy

[ credits: D. Kostunin, A. Alkan, A. Chaikova, V. Sotnikov et al. ] D. Bonacorsi36

Observations in astronomy:



LLMs for Multimessenger Astronomy
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An example text based on 
ATel messages 

(astronomerstelegram.org)

From entity recognition…

… to semantic relationship 
extraction

Goal is to build an information extraction system, i.e. recognise a list of predefined concepts (celestial objects, 
astronomical facilities, physical properties, people, organisation etc.) from a text and produce LLM-generated event 
summaries based on the parameters of each event

[ credits: D. Kostunin, A. Alkan, A. Chaikova, V. Sotnikov et al. ]

https://astronomerstelegram.org/


A 7B LLM fine-tuned on Cosmology papers and textbooks
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“Cosmosage”, a general-purpose AI-assistant specialised in answering questions 
about cosmology (based on Mistral-7B-v0.1) 

• training dataset: arXiv papers, astro textbooks, physics textbooks, wikipedia

[ credits: Tijmen de Haan ]



A LLM-based AI-assistant for a CERN experiment

D. Bonacorsi39

“ChATLAS” a prototype LLM project in a LHC experiment (ATLAS) at CERN (as of end 
2023) 

Data gathering part is interesting (data chunking and data retrieval not described here) 

• Docs: twiki (>2k), sw docs (>500), e-groups/mails archive (>10k), indico meetings’ agendas incl. attached 
slides and minutes (>440k), Mattermost, Jira tickets, experiment’ papers and internal notes (>66k) 

• Either HTML or scraped into markdown 

Many open challenges: 

• highly heterogeneous data 

• ensure that collaboration DBs are accessible and exportable; websites should live on a git repo; pubs 
should be saved as latex, and compiled separately; discussion forums should have anonymisation 
options… Estimates indicate that this would have saved ~1 yr of data wrangling 

• Hallucinations are a real problem 

• Not many gpu-hrs, but many expert-hrs, needed for any high-quality fine-tuned AI assistant

[ credits: Cary Randazzo ]



Educational Outreach with AI-Assisted CERN Open Data

https://opendata.cern.ch/ 
D. Bonacorsi40

https://opendata.cern.ch/


An example: a Higgs analysis guide
Define a training goal Get draft code for it

Get explanations, refine, learn
Reach the training objective

[ credits: Paul Philipp Gadow et al ] D. Bonacorsi41



LLM for particle accelerators

GAIA (@DESY): a General AI-assistant for Intelligent Accelerator Ops 

• Experimental “procedures” defined as a collection of high-level “actions” in a Control System 
e.g. for managing machine pre-sets  

• Exploring a LLM (mixtral:8x7b-instruct-v0.1-q8_0 with 32k context size), agent implemented in 
Python using the langchain module, prompting based on ReAct (as a combination of chain-of-
though prompting and information injection via “actions”)

EPA project (@CERN), AccGPT, etc.. 

• EPA = Efficient Particle Accelerator project 

• AccGPT = accelerating science via a chatbot for knowledge retrieval for CERN 
specific content

[ credits: F. Mayet, J. Kaiser. F. Rehm et al ] D. Bonacorsi42

A variety of projects.. 

Plenty of work in progress on LLMs, showing potential towards natural language driven autonomous particle 
accelerators 

• Attempts with GPT 3.5 Turbo, Megadolphin, Vicuna 7B 16K, Mistral 7B, Mixtral 7x8B, Starling-LM, GPT 4 Turbo, GPT4, Orca 2 7B, 
Orca 2 13B , Llama 2 70B, Falcon 180B, .. 

• Constant seek for (and tests with) better models, better prompting, … 



LLMs training: self-supervised
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Different from supervised learning 

• No need to label anything! I have plenty of text, so.. 

Self-supervised learning: masked portion of text 
and sliding windows as training tactics 

• take a large text (easy to find..) as training set, and 
assume (for simplicity) tokens = words 

• fixed-length sequences (e.g. 10 words) are extracted 
from the long text 

• the model is trained to predict the 11th word given the 
first 10 (no labelling required) 

RED: word to predict
ORANGE: words given in input
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Different from supervised learning 

• No need to label anything! I have plenty of text, so.. 

Self-supervised learning: masked portion of text 
and sliding windows as training tactics 

• take a large text (easy to find..) as training set, and 
assume (for simplicity) tokens = words 

• fixed-length sequences (e.g. 10 words) are extracted 
from the long text 

• the model is trained to predict the 11th word given the 
first 10 (no labelling required) 

After training, the model can be used for 
autoregressive text generation 

→ “next token prediction” mechanism

BLU becomes the new GREEN, 
and the window slides..

LLMs training: next token prediction



Beyond next-token prediction
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Self-supervised training is based on this “next token prediction”: 

Criticised as being too simplistic 
• It does nothing really sophisticated, indeed: it just relies on the statistics that I 

have in languages.. 

Actually, this is one of its main key strengths (e.g. I.Sutskever [1], 2023) 

• Evidences that it enables the model to learn, and not based only on statistical 
properties of language… 

• … and it also forces the model to make accurate predictions even in 
mathematics, logic, coding, and common sense reasoning, where - in the 
absence of an oracle or exhaustive memorisation of all cases - correct 
predictions are only possible by learning an underlying model of the 
problem 

Additionally, the simplicity of the approach does not impose 
constraints on the learning/modelling, hence leaving the LLM free 
to choose the most suitable strategy for different problems

3 + 2 = ?

333 + 2 = ?

I have seen this pattern plenty 
of times in training 
→ 5 

I have NOT seen this pattern 
many times.. nevertheless.. 
→ 335  

Impossible to show all cases in 
training → it just extrapolates!

[1] Ilya Sutskever (OpenAI) interview, 2023 (youtube) 

https://www.youtube.com/watch?v=YEUclZdj_Sc


Large Language Models and “emergent abilities”
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“Emergence”: a sudden appearance of a 
novel behaviour (often referred to as a 
“phase transition”) 

• Scaling LMs → hit a series of critical scales at 
which new abilities are suddenly “unlocked” 

• not directly trained to gain such abilities: they 
just manifest rapidly and in unpredictable ways

small changes to the quantitative 
parameters of a system make huge 
changes to its qualitative 
behaviour

More → Sparks of AGI: early experiments with GPT-4, Mar 2023, arXiv:2303.12712

Examples: 

• problem solving (math, logic, quantitative reasoning), common sense and social behaviour, (controlled) 
generation of texts, images, sounds, .. ; ability to write, correct, and execute (pseudo)-code



Large Language Models and “emergent abilities”
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Animation here - will not be visible in the PDF



Algorithmic progress in LLMs
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The compute required to reach a set performance threshold has halved approx. every 8 
months, with a 95% confidence interval of around 5 to 14 months  

• Algorithmic improvements faster than hardware gains per Moore’s Law!

Algorithmic progress in LM, Mar 2024, arXiv:2403.05812

Loss

Compute

Will we run out of data? compute? networks? … or energy? 
.. and algorithms will continue to get better → also if/when written by AI itself..

Credits: M. Schwartz



Biological vs Machine “intelligence”

Credits: M. Schwartz D. Bonacorsi49

Current LLMs: 

• Parameters: roughly the same nb (1014) as the human brain  

• .. but more compute: brain (1016 FLOPS) over a lifetime (100 years) → 1022 ops, to 
be compared with LLM training time, around 1025 ops 

❖ And it consumes more.. Red AI is a serious issue!

1015

1012

109

0 5 10-5-10

Years

Parameters LLMsMammalian biological brains

49



Biological vs Machine “intelligence”

Credits: M. Schwartz D. Bonacorsi50

Measuring “intelligence” by number of neurons (or computational units): 

• biological → growth by a factor 2x in 1 million years  

• machine → growth by a factor 10x in 1 year 

Nature Reviews Physics, 4, 741–742 (2022)

even sub-exponential grown will 
soon be superhuman !  

→ AGI around the corner??

The intersection - when machines 
and biology have comparable 
"intelligence” - is ~now 



“but physics requires creativity..” (?!)

D. Bonacorsi51Nature Sci Rep 14, 3440 (2024)

GPT4 more creative than 99% of humans.. 
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Can LLM help “consultants”?

Navigating the Jagged Technological Frontier (…), Harvard Business School, 2023)

AI-assistants as skill-levellers

Yes, and by a lot!

Average consultants using AI perform as good as 
best consultants 

“but we are better than machines..” (?!)

→ towards “augmented intelligence”?



Skill-leveller, indeed? What about HEP theory?
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Credits: M. Schwartz, Harvard and NSF IAIFI, 
elaborating on hard theoretical physics problems 
and AI, at EuCAIFCon (Amsterdam, 2024) 

Credits: M. Schwartz

Can AI be a skill-leveller (or more) for e.g. HEP theory?

Humans like to 
“visualise”, as 
we have eyes.

For a machine, 2D 
is not special: it 
can easily visualise 
in d dimensions

→ project in 2D

Humans hold few 
concepts in 
working memory at 
once, and like 
“simple and 
elegant” equations

A computer memory 
can handle much 
more concepts at 
once, and can 
understand systems 
not governed by 
simple equations



We are a training set for machines
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Current state-of-the-art AI can answer questions / (~) solve textbook problems 

How? → via training on huge datasets of answered questions / solved problems  

By whom? → Us! we answered and solved all that, we actually generated its training set  

• (and we do the same for ourselves)

E.g. LLMs: 

• learn from our training set 

• Human feedback helps refine 
the models 

• Machines generates data and 
refines its models 

Humans and machines seem very close 
to be not so different..



(even beyond) augmented intelligence
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Maybe the problems are just too difficult (for us)? 
• Example: could a cat ever learn to play chess? Humans have limits too.. e.g. biology

Is this what we want? I guess not. 
 
But.. 

What if this is the best we will get?  
What if AI could make us optimistic 
for a substantial progress in HEP 
theory in our lifetime, while it 
would be largely unprobable 
without AI? 

Would you give AI the keys of 
HEP research? And of ALL 
scientific research??

Credits: M. Schwartz
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If you have a definitive answer to the last question.. 

.. drop me a mail before I run the AI masterclass later today! → daniele.bonacorsi@unibo.it 

Thanks for the attention

Today starting at 11am, 

three 1h30 slots, 

this same auditorium

mailto:daniele.bonacorsi@unibo.it

