Hybrid Quantum Computing Workshop

From Quantum Computing to Large Language Models: **Recent Advances and Results**

\$

- Chen-Yu Liu 劉宸銉
 - PhD candidate

Hybrid Quantum-classical architecture

- Effectiveness/challenge of data encoding
- Quantum hardware requirement during inference

Hybrid Quantum-classical architecture

- Effectiveness/challenge of data encoding
- Quantum hardware requirement during inference

and remote delay.

0 angle —	

Hybrid Quantum-classical architecture

- Effectiveness/challenge of data encoding
- Quantum hardware requirement during inference

Which skill should I use now?

Your queue position is: 9487

Hybrid Quantum-classical architecture

- Effectiveness/challenge of data encoding
- Quantum hardware requirement during inference

Which skill should I use now?

Your queue position is: 9487

Quantum-Train

Use polylog(M) parameters to train M parameters

Quantum-Train

Beyond the data-encoding circuit and quantum computer inference

CIFAR-10 dataset

airplane	🛁 🔌 🚧 📈 🤟 = 🛃 🔐 🛶 🕹	
automobile	문 🖏 🚵 😂 过 🚍 🐐	
bird	in 🛃 💋 🕺 🔊 🗛 🕅 😒 💘	and the second
cat	li 🖉 🐳 🔜 🎇 🙋 🕰 🤘 👘	
deer		
dog	1988 🚲 🦟 💥 🎘 🎘 🥘 🛒 🗥 🌋	-
frog	n	
horse		7
ship	Te 😼 🚈 🥌 👛 🥩 🖉 🜌	z
truck	4 🚳 🚛 🚳 🐲 🔤 📷 🖓	

Model	7
Classical CNN	
QT-323	

and QT models for CIFAR-10 dataset.

Liu, et. al. arXiv: 2405.11304 Liu, et. al. QCE24

- "Generate" the classical NN parameters by Quantum NN
- The "trained" result is a classical NN
- Use polylog(M) parameters to train M parameters

Quantum-Train

Reinforcement Learning

Use < 50% training parameters

- 1.Quantum-Train, arXiv: 2405.11304
- 2.Introduction to Quantum-Train Toolkit, IEEE QCE 2024

3.QTRL: Toward Practical Quantum Reinforcement Learning via Quantum-Train, IEEE QCE 2024
4.Quantum-Train Long Short-Term Memory: Application on Flood Prediction Problem, IEEE QCE 2024
5.Training Classical Neural Networks by Quantum Machine Learning, IEEE QCE 2024
6.Federated Quantum-Train with Batched Parameter Generation, ICTC 2024 (Best Al paper)
7.Quantum-Train with Tensor Network Mapping Model and Distributed Circuit Ansatz, ICASSP 2025
8.Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection, ICASSP 2025
9.Programming Variational Quantum Circuits with Quantum-Train Agent, QCNC 2025

LSTM

- Second Place Prize, Deloitte's Quantum Climate Challenge (2024)
- Second Place Prize, A Matter of Taste Challenge, Xanadu QHack Open Hackathon (2024)

=		ChatGPT 40 >	C
		Pick a number from '	1 to 50
6	20		
		We will not communicate you and I will not use Cha for 20 days	e with atGPT
5	Can I pi	ck another number?	
			Yes
6	50		

=		ChatGPT 40 >	C
		Pick a number from '	1 to 50
6	20		
		We will not communicate you and I will not use Cha for 20 days	e with atGPT
5	Can I pi	ck another number?	
			Yes
6	50		

Transformer-based LLMs

- Pre-trained on massive datasets for tasks like Q&A, summarization, and translation.
- Highly flexible but challenging to train and fine-tune due to billions of parameters.

OpenAI	GPT3 GPT4	175B parameters 1.76T parameters
Meta	Llama-3 Llama-3	8B parameters 70B parameters
Google	Gemma Gemma	2B parameters 7B parameters

Transformer-based LLMs

- summarization, and translation.
- billions of parameters.

Transformer-based LLMs

- Pre-trained on massive datasets for tasks like Q&A, summarization, and translation.
- Highly flexible but challenging to train and fine-tune due to billions of parameters.

Published as a conference paper at ICLR 2025

A QUANTUM CIRCUIT-BASED COMPRESSION PER-SPECTIVE FOR PARAMETER-EFFICIENT LEARNING

Chen-Yu Liu^{1,2} Chao-Han Huck Yang³ Hsi-Sheng Goan^{1,4,5,6} Min-Hsiu Hsieh² ¹ Graduate Institute of Applied Physics, National Taiwan University, Taipei, Taiwan ² Hon Hai (Foxconn) Research Institute, Taipei, Taiwan ³ Georgia Institute of Technology, USA ⁴ Department of Physics and Center for Theoretical Physics, National Taiwan University, Taipei, Taiwan ⁵ Center for Quantum Science and Engineering, National Taiwan University, Taipei, Taiwan ⁶ Physics Division, National Center for Theoretical Sciences, Taipei, Taiwan

The Gap

Sounds good but...

 $\sim 10^5$ parameters

Relate to qubit count of original QT: 30~40 qubits

oenAI	GPT3 GPT4	175B parameters 1.76T parameters
1eta	Llama-3 Llama-3	8B parameters 70B parameters
ogle	Gemma Gemma	2B parameters 7B parameters

 $10^6 \rightarrow 10^9 \rightarrow 10^{12} \rightarrow \dots$

LLM

Parameter Efficient Fine-Tuning LLMs

LoRA: Low-Rank Adaptation @ ICLR 2022

• Method

• For a pre-trained weight matrix $W_0 \in \mathbb{R}^{d \times k}$, we constrain its update by representing the latter with a low-rank decomposition $W_0 + \Delta W = W_0 + BA$, where $B \in \mathbb{R}^{d \times r}$, $A \in \mathbb{R}^{r \times k}$, with W_0 frozen during the training. The forward pass yields:

$$\bullet h = W_0 x + \Delta W x = W_0 x + BA x$$

- With the rank $r \ll \min(d, k)$
- ${\boldsymbol{\cdot}}$ Only A and B will be tuned during training

ICTC 2024 Best AI paper award

Low-rank adaptation methods with QPA.

Testing perplexity of GPT-2 (80M) and Gemma-2 (2B) models compared to the number of trainable parameters for LoRA, DoRA, and QPA on the WikiText-2 dataset.

All experiments were conducted on NVIDIA V100S and NVIDIA H100 GPUs.

On ideal simulator

QPA on Prefix-Tuning and Feed-forward adapter.

Testing perplexity of GPT-2 and Gemma-2 models compared to the number of trainable parameters for prefix-tuning (PT), feed-forward adapter (FFA), and QPA on the WikiText-2 dataset.

On ideal simulator

All experiments were conducted on NVIDIA V100S and NVIDIA H100 GPUs.

Effects of QPA settings

(a) Qubit usage versus the number of trainable parameters for QPA applied to LoRA and DoRA on GPT-2 and Gemma-2 models. (b) The relationship between testing perplexity and LoRA rank for QPA applied to GPT-2 and Gemma-2. (c) and (d) Testing perplexity depending on the QNN repetition L for QPA applied to LoRA on GPT-2 and Gemma-2.

On ideal simulator

(arXiv:2409.02763), Low-rank adaptation, ...

(a) Qubit usage versus the number of trainable parameters for QPA applied to LoRA and DoRA on GPT-2 and Gemma-2 models. (b) The relationship between testing perplexity and LoRA rank for QPA applied to GPT-2 and Gemma-2. (c) and (d) Testing perplexity depending on the QNN repetition L for QPA applied to LoRA on GPT-2 and Gemma-2.

On ideal simulator

Effects of quantum noise model from IBM quantum computers

applied at LoRA rank (r = 4), where n_{shot} is fixed at $n_{shot} = 20 \times 2^N$.

Testing perplexity of GPT-2 versus the number of trainable parameters on different noise setting with RY + CNOT and RX+ CNOT ansatz. The comparison includes LoRA and QPA

On noisy simulator

Effects of quantum noise model from IBM quantum computers

NoisyTune: A Little Noise Can Help You Finetune Pretrained Language Models Better

Chuhan Wu[†] Fangzhao Wu^{‡*} Tao Qi[†] Yongfeng Huang[†] [†]Department of Electronic Engineering, Tsinghua University, Beijing 100084, China [‡]Microsoft Research Asia, Beijing 100080, China

(ACL2022)

Testing perplexity of GPT-2 versus the number of trainable parameters on different number of measurement shots with RY + CNOT ansatz. The comparison includes LoRA and QPA applied at LoRA rank (r = 4).

* On ideal simulator

Testing perplexity of GPT-2 versus the number of trainable parameters on different number of measurement shots with RY + CNOT ansatz. The comparison includes LoRA and QPA applied at LoRA rank (r = 4).

On ideal simulator

Quantum Parameter Adaptation

Summary

Generate PEFT parameters by QNN and MLP for LLMs

- The first example of using QML to fine-tune classical LLMs with improved performance.
- Further reduction of training parameters based on classical PEFT methods.
- No issues with data encoding.
- No quantum hardware required during inference.

On-going & Future work

- A generative method to mitigate the issue of finite measurement shots. (ICLR 2025 workshop)
- Characterizing the effect of real quantum computer noise on QPA.
- Real quantum computer implementation.

Appendix

Testing perplexity of GPT-2 versus the number of trainable parameters on different number of measurement shots with RY + CNOT ansatz. The comparison includes LoRA and QPA applied at LoRA rank (r = 4).

* On ideal simulator

Pre-train and predict

Article Open access Published: 20 October 2022

Flexible learning of quantum states with generative query neural networks

Yan Zhu, Ya-Dong Wu ⊠, Ge Bai, Dong-Sheng Wang, Yuexuan Wang & Giulio Chiribella ⊠

Nature Communications 13, Article number: 6222 (2022) Cite this article

5055 Accesses 6 Altmetric Metrics

Pre-train and sample

Article | Published: 11 March 2019

Reconstructing quantum states with generative models

Juan Carrasquilla [™], <u>Giacomo Torlai</u>, <u>Roger G. Melko</u> & <u>Leandro Aolita</u>

Nature Machine Intelligence 1, 155–161 (2019) Cite this article

6156 Accesses | 32 Altmetric | Metrics

- 2. Precision of measured basis probability is low.

General scheme of frame generation in video data

4K: 3840 * 2160 720p: 1280 * 720

General scheme of frame generation in video data

"Neighbor" frames

General scheme of frame generation in video data

How about quantum?

General scheme of frame generation in video data

How about quantum?

What is the similar role of "neighbor" in the Hilbert space (basis data) ?

 \rightarrow Hamming distance

General scheme of frame generation in video data

How about quantum?

What is the similar role of "neighbor" in the Hilbert space (basis data) ?

 \rightarrow Hamming distance

Hamming distance = 1 $01010 \leftrightarrow 01110$

The target for Generative Interpolation (GI)

Finite Measurement shots $(n_{shot} = c \cdot 2^N)$

Finite Measurement shots with Generative Interpolation

Exact Measurement

 $(n_{shot} \rightarrow \infty)$

Generative Interpolation (GI) of close Hamming distance data

When a basis $|\phi_i\rangle$ is found to be unmeasured, P($|\phi_i\rangle$)=0, a basis subset { $|\phi_k\rangle$, $|\phi_j\rangle$, ..., $|\phi_l\rangle$ } is constructed by collecting the basis that have Hamming distance =1 with $|\phi_i\rangle$.

The corresponding measurement probabilities of basis in this subset, are then inputted in to a neural network model, where this model gives the estimation of P($|\phi_i\rangle$).

Generative Interpolation (GI) of close Hamming distance data

$$\mathsf{P}(|\phi_i\rangle)=\mathsf{O}, |\phi_i\rangle=|00000\rangle$$

Set of Hamming distance = 1 $S = \{ |10000\rangle, |01000\rangle, |00100\rangle, |00010\rangle, |00001\rangle \}$ Neural network model F $P(|\phi_i\rangle) = F(P(\mathcal{S}))$

The parameters of this neural network are learned along with the Quantum Parameter Adaptation process.

Generative Interpolation (GI) of close Hamming distance data

Generative Interpolation (GI) enhanced Quantum Parameter Adaptation

- 2. Without additional sampling for constructing

Generative Interpolation (GI) enhanced Quantum Parameter Adaptation

Add random interpolation ?

Original QPA

Result of Generative Interpolation (GI) for few measurement shots

Trainable Parameters

