International Symposium on Grids & Clouds (ISGC) 2025

Hybrid Quantum Computing Workshop - I 15:00 - 15:30

Numerical Tool Development and Application for Surge-Tide-Wave Modeling

Yu-Lin Tsai*, Assistant Professor, Kyoto University, Japan Tso-Ren Wu, Professor, National Central University, Taiwan Philip L.-F. Liu, Professor, Texas A&M University, USA

Storm Surge

Storm surge, a meteorological forced long wave motion due to a tropical storm, is in a length scale of $O(10^2)$ km and a time scale of $O(10^0)$ to $O(10^1)$ hr (Bode and Hardy, 1997).

Storm Surge due to Typhoon Haiyan (2013) in the Philippines (Roeber & Bricker, 2015; Nature Communications)

Source: https://www.nhc.noaa.gov/surge/images/totalWaterLevel.png

How do we simulate storm surge?

Shoreline in Hydrodynamic Modeling

Structured Grid

Unstructured Grid

Source: https://www.unoceanprediction.org/en/resources/wiki/chapters/350

Grid Nesting in Storm Surge Modeling

- Computational efficiency compared to unstructured grids
- Grid generation is simpler than unstructured grids.
- But only a few regions can be covered by optimal grid sizes.

Kim et al. (2008; Applied Ocean Research)

Developed Surge-Tide-Wave Modeling Package

Meteorological Fields

Storm Surges: (1) Sea-Level Pressure Gradient, (2) Wind shear Stress, (3) Wave-Enhanced Radiation Stress, (4) Tide Effect, (5) Coriolis Effect, and (6) Bathymetry Effect.

Storm Surge Model – COMCOT-SURGE

(COrnell Multi-Grid Coupled Tsunami Model – Storm Surge)

Arakawa C Grid

1.

2.

3.

Multi-Grid Nesting in COMCOT-SURGE

Grid Nesting in Space Domain

Spectral Wave Model – SWAN (Simulating WAves Nearshore)

G.E. on Cartesian Coordinate System

$$\frac{\partial N}{\partial t} + \frac{\partial c_x N}{\partial x} + \frac{\partial c_y N}{\partial y} + \frac{\partial c_\sigma N}{\partial \sigma} + \frac{\partial c_\theta N}{\partial \theta} = \frac{S_{tot}}{\sigma}$$

Source and Sink Terms in SWAN Model

Wave growth by the Wind (Linear: Cavaleri and Malanotte-Rizzoli, 1981; Exponential: Komen et al., 1984)

> Triad (Lumped Triad Approximation; Eldeberky, 1996) and Quadruplet wave-wave interaction (Discrete Interaction Approximation; Hasselmann et al., 1985)

$$S_{tot} = S_{in} + S_{nl3} + S_{nl4} + S_{ds,w} + S_{ds,b} + S_{ds,b}$$

Wave decay due to white capping (Komen et al., 1984), bottom friction (JONSWAP; Hasselmann et al., 1973) and depth-induced wave breaking (Battjes and Jansen, 1978)

Total energy density

Action density

$$E(f) = \int_0^{2\pi} E(f,\theta) d\theta \qquad \qquad N = E/\sigma$$

Radiation Stress

The depth-integrated radiation stresses are first introduced by Longuet-Higgins and Stewart (1960, 1962, 1963, 1964) and integrated for random shortcrested waves over spectrum by Battjes (1972).

$$S_{xx} = \rho_w g \iint \left(\frac{C_g}{C} \cos^2 \theta + \frac{C_g}{C} - \frac{1}{2}\right) N \sigma d\sigma \, d\theta$$
$$S_{yy} = \rho_w g \iint \left(\frac{C_g}{C} \sin^2 \theta + \frac{C_g}{C} - \frac{1}{2}\right) N \sigma d\sigma \, d\theta$$
$$S_{xy} = \rho_w g \iint (\cos \theta \sin \theta) N \sigma d\sigma \, d\theta$$
$$S_{yx} = S_{xy}$$

Model Validation Solitary Wave Runup on a Conical Island

(Liu et al., 1995; Briggs et al., 1995; Yeh et al., 1994)

Incident Wave Condition

Case	Wave Nonlinearity (A/d)	Solitary Wave Height A (unit: m)	Still Water Depth d (unit: m)	
Case A	0.045	0.0144	0.32	
Case B	0.091	0.0291	0.32	
Case C	0.181	0.0579	0.32	

3D Presentation of Topography by MATLAB

(z = 0.0 indicates the still water surface)

Computational Settings

Wang and Power (2011)

Grid 01

dx = dy = 0.1 [m]; dt = 0.01 [sec] Linear SWEs (Frictionless)

Grid 02 dx = dy = 0.033 [m]; dt = 0.05 [sec] Nonlinear SWEs (Frictional, n = 0.013)

Wave Gauge Locations

	X Location	Y Location		
Gauge Number	(Unit: m)	(Unit: m)		
G6	15.00	9.40		
G9	15.00	10.40		
G16	17.58	13.00		
G22	15.00	15.60		

Case B - *H/d* = 0.091

Yu-Lin Tsai, Disaster Prevention Research Institute (DPRI), Kyoto University

Typhoon-Prone Regions in East Asia

In the future, the numbers of typhoons tend to decrease <u>but increase in intensity</u> (see Emanuel, 2005; Schiermeier, 2013; Lin and Chan, 2015; Sun et al., 2017), making coastal regions more susceptible to storm surges.

the past years (Wu and Kuo, 1999; Liang et al., 2017).

Typhoons in Taiwan

西元1911年至2023年颱風侵襲臺灣各月個數

5月

9

0.08

6月

25

0.23

7月

97

0.87

4月

1

0.01

\$:6.6T'

8月

CWA: https://www.cwa.gov.tw/V8/C/K/Encyclopedia/typhoon/typhoon_list02.html#typhoon-38

表7

月份

個數

平均

2015 Super Typhoon Soudelor

Best-track data from JTWC (Joint Typhoon Warning Center)

YY	MM	DD	HR	Lat	Lon	Vmax (m/s)	MSLP (hPa)
2015	8	3	0	16.2	144.0	56.59	941
2015	8	3	6	16.9	142.9	64.31	929
2015	8	3	12	17.4	141.8	72.02	918
2015	8	3	18	17.8	140.7	79.74	907
2015	8	4	0	18.2	139.6	77.17	911
2015	8	4	6	18.6	138.3	72.02	918
2015	8	4	12	18.9	137.2	69.45	922
2015	8	4	18	19.3	136.1	64.31	929
2015	8	5	0	19.5	134.9	59.16	937
2015	8	5	6	19.9	133.7	54.02	944
2015	8	5	12	20.0	132.5	51.44	948
2015	8	5	18	20.1	131.4	48.87	952
2015	8	6	0	20.4	130.2	46.30	956
2015	8	6	6	20.9	129.1	43.73	959
2015	8	6	12	21.2	128.0	46.30	956
2015	8	6	18	21.6	126.7	48.87	952
2015	8	7	0	21.9	125.8	51.44	948
2015	8	7	6	22.4	124.8	54.02	944
2015	8	7	12	22.9	123.8	54.02	944
2015	8	7	18	23.7	122.7	51.44	948
2015	8	8	0	24.2	121.5	48.87	952
2015	8	8	6	24.1	120.2	38.58	967
2015	8	8	12	24.9	119.3	36.01	970
2015	8	8	18	25.3	118.7	28.29	982
2015	8	9	0	25.8	117.8	20.58	993
2015	8	9	6	26.6	117.0	18.01	996

ECMWF ERA5 10-m Winds (1)

2015.08.06 12:00 (UTC)

ECMWF ERA5 10-m Winds (2)

2015.08.07 18:00 (UTC)

Yu-Lin Tsai, Disaster Prevention Research Institute (DPRI), Kyoto University

Hindcast Simulations for Storm Surges, Tides, and Waves

COMCOT-SURGE: Grid 01 (linear and frictionless); Grids 02-08 (nonlinear and frictional, n = 0.025).

SWAN: 36 bins (wave direction from 0 to 360 deg) and 36 bins (wave frequency from 0.03 *Hz* to 1.0 *Hz*)

TPXO8-atlas: Tide elevations along the outermost boundaries of the first layer every 600 sec.

*The wind-drag coefficient proposed by Wu (1980, 1982) with an imposed lower bound limit of WAMDI (1988) is used.

Finer Nested Grid Domains for Nearshore Regions (Continued)

COMCOT-SURGE and SWAN adopt the same computational domains for model coupling (one-way coupling).

Numerical Modeling Results and Comparison

Blue – Numerical Results Black – Observation Data

However, some challenges that we still have now.

Climate Change and Future Typhoon Scenario Selection

d4PDF (Database for Policy Decision Making for Future Climate Change; Japan)

Fig. 6 a Observed (Knapp et al. 2010) and **b** simulated tropical cyclone trajectories. The simulation of d4PDF-G is of one member under the past climate condition. The trajectories are colored depending on wind speed. **c** Genesis frequencies of **a** and **b** as a function of latitude (Yoshida et al. 2017)

Four sets of experiments are performed by the AGCM;

- historical climate simulation: 1951-2010, 100 members
- non-warming simulation: 1951-2010, **100 members**
- +2K future climate simulation: 2031-2090, **54 members**
- +4K future climate simulation: 2051-2110, **90 members**

Ishii & Mori. (2020). d4PDF: largeensemble and high-resolution climate simulations for global warming risk assessment. Progress in Earth and Planetary Science.

Some challenges that we have

- Storm surge projection under **future climate change**.
 - Simulations are usually calculated for **50-100 years**.
 - Different climate change scenarios need to be considered for policy decision.
- Computational efficiency is a big issue!
 - Computation generally replies on super computers.
 - Workstations/clusters usually cannot handle the number of calculations.
- Simulations using **quantum computers** or **AI-hybrid techniques** may be one of solutions to enhance the simulation efficiency.

References

- <u>Tsai, Y.-L.</u>, Wu, T.-R., Liu, P. L.-F., Teng, Y.-C., Chien, H., & Cheng, H.-Y. (2025). Coastal Storm Surge Amplification by Wave Radiation Stress: The Case Study of 2015 Typhoon Soudelor in East Taiwan. *Applied Ocean Research*, *154*, 104370. https://doi.org/10.1016/j.apor.2024.104370
- <u>Tsai, Y.-L.</u>, Wu, T.-R., Yen, E., Tanpipat, V., & Lin, C.-Y. (2024). Storm Surge Induced by Tropical Storm Pabuk (2019) and Its Impact by Track Variation Scenarios on the Thailand Coast. *Natural Hazards*, 1–31. https://doi.org/10.1007/s11069-024-06717-8
- <u>Tsai, Y.-L.</u>, Wu, T.-R., Yen, E., Lin, C.-Y., & Lin, S. C. (2022). Parallel-Computing Two-Way Grid-Nested Storm Surge Model with a Moving Boundary Scheme and Case Study of the 2013 Super Typhoon Haiyan. *Water*, *14*(4), 547. https://doi.org/10.3390/w14040547
- Tsai, Y.-L., Wu, T.-R., Lin, C.-Y., Lin, S. C., Yen, E., & Lin, C.-W. (2020). Discrepancies on Storm Surge Predictions by Parametric Wind Model and Numerical Weather Prediction Model in a Semi-Enclosed Bay: Case Study of Typhoon Haiyan. *Water*, *12*(12), 3326. https://doi.org/10.3390/w12123326

Questions or Comments?

Contact

Dr. Yu-Lin Tsai

Assistant Professor

Disaster Prevention Research Institute, Kyoto University, Japan

Email: tsai.yulin.6t@kyoto-u.ac.jp

