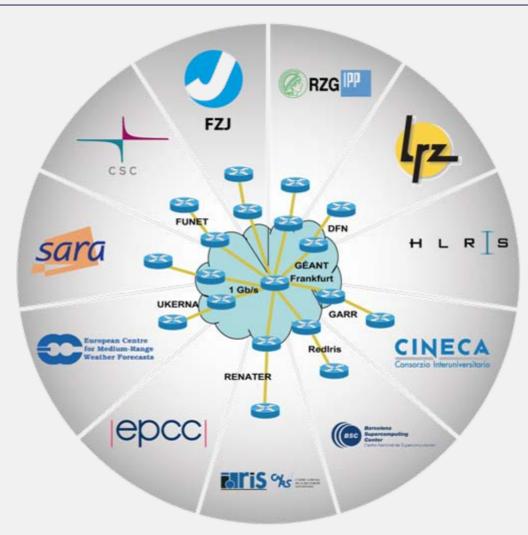
Experiences with using UNICORE in Production Grid Infrastructures DEISA and D-Grid

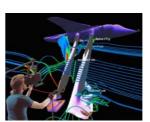
- The Eurpopean DEISA project
- The German Grid initiative D-Grid
- Grid middleware UNICORE
- Experiences with UNICORE in production in DEISA and D-Grid
- Lessons Learned
- Conclusion



- Consortium of leading national supercomputing centers in EU
- Deploy and operate an innovative, distributed, terascale
 Grid-empowered infrastructure
 - to enhance and reinforce High Performance Computing in Europe
 - to be used by scientists and industries in a coherent and comfortable way
 - with production quality being stable, secure, reliable, persistent, ...
 → "no-complains-from-users" services
- Deep integration of middleware and OS / batch system layer

DEISA Partners

DEISA Service Activities



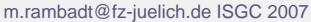
- SA1 Network Operation and Support (FZJ)
 - Deployment and operation of a gigabit per second network infrastructure for an European distributed supercomputing platform. Network operation and optimization during project activity
- SA2 Data Management with Global File Systems (RZG)
 - Deployment and operation of global distributed file systems, as basic building blocks of the "inner" super-cluster, and as a way of implementing global data management in a heterogeneous Grid
- SA3 Resource Management (CINECA)
 - Deployment and operation of global scheduling services for the European super-cluster as well as for its heterogeneous Grid extension
- SA4 Applications and User Support (IDRIS)
 - Enabling the adoption by the scientific community of the distributed supercomputing infrastructure as an efficient instrument for the production of leading computational science
- **SA5 Security** (SARA)
 - Providing administration, authorization, and authentication for a heterogeneous cluster of HPC systems with special emphasis on single sign-on

- general aspects

- the German Grid initiative
- builds up and operates a sustainable Grid infrastructure
- establishes methods of e-science in the German scientific community
- More than 100 partners
- Started in 2005 with a 100 Million Euro funding from the German ministry for Education and Research
- Initiative contains following projects
 - DGI D-Grid Integration project
 - AstroGrid-D in astronomy
 - C3-Grid for climate research
 - HEP-Grid for high energy physics
 - InGrid for engineering research
 - MediGrid for medical research
 - TextGrid for humanities

Motivation: Why UNIC#RE?

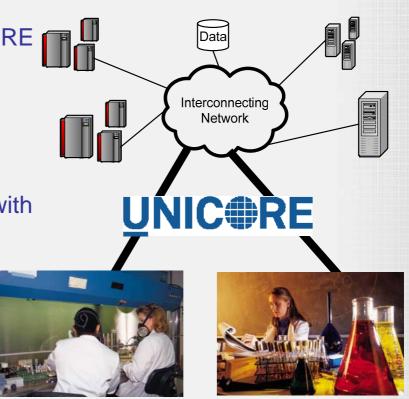
Scientists have to use huge computational and storage resources



Motivation: Why UNIC#RE?

- Supercomputers are managed by Resource Management Systems (RMSs) that handle the scheduling
- But: There are many RMSs available
- Many proprietary ways of job submission
 - IBM Loadleveler → llsubmit...
 - Torque Resource Manager → qsub...
- Different job description languages (# of nodes, memory requirements...)

Motivation: Why UNIC@RE?

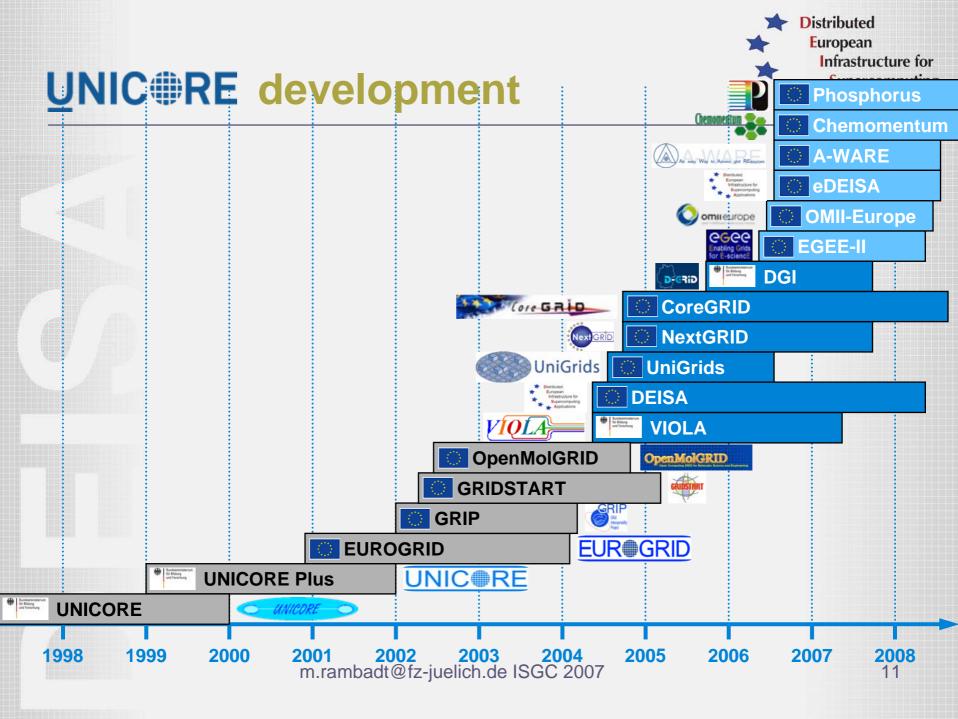


Solution: Grid System UNICORE

 Define job workflows in abstract manner

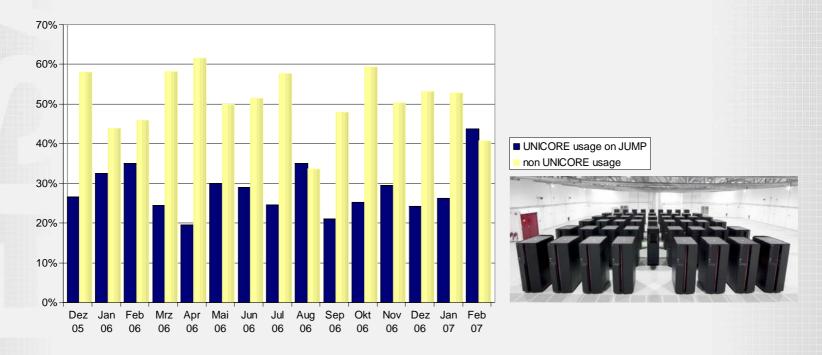
 Immediate portability of job definitions for other systems with other architectures

 No 'learn overhead' if a new RMS is used


Both DEISA and D-Grid are using UNICORE as Grid middleware

UNICRE

- UNiform Interface to COmputing Resources
- Started as a German funded Project in 1997
- Enhanced in many (European) projects
- Seamless and secure access to distributed resources and data via an intuitive GUI
- workflow engine for
 - complex multi-site multi-step workflows
 - job monitoring
- easy installation and configuration of client and server components



UNICRE in production

 UNICORE production use on JUMP at Research Centre Juelich (IBM p690 eSeries Cluster (1312 CPUs, 8.9 TFlops)

Almost 1/3 of all jobs are UNICORE jobs

Lessons Learned...

- Often "only" initial hurdles
 - adapting applications
 - managing certificates
- How easy is it to access the Grid Middleware?
 - Certificate handling
 - Automatic user management in DEISA in D-Grid
- Users have to be stimulated and encouraged to
 - use Grid technology for applications, computations, data transfer and access to resources
 - adapt/integrate their applications to/into Grids
 - once convinced they likely use it further on
- Operation of production environments is costly
 - certification authority, administrative tools, integration into site management, licenses, ...

More lessons learned

- Fulfillment of functional requirements is not enough
- Users want
 - help to overcome initial hurdles
 - 24/7 availability of the Grid infrastructure
 - Monitoring tool SIMON for DEISA and D-Grid UNICORE components
 - 24/7 availability of the Grid experts
 - support hotline, help desk, mailing lists, ...
 - long-term commitment for continuous development and support
 - workshops, hands-on training, ...
- Agreement on what the users want and what the developers implement is crucial
- Scientist sometimes don't like GUIs
 - DEISA developed DESHL as command line interface to UNICORE to address this

Conclusions

- Production Grids are possible
- But: users only use Grid middleware if
 - Deployment of new production software offers added value
 - Easy usage, increased effectiveness, decreased cost, ...
 - integration of legacy applications
- Success of the Grid Middleware depends on successful interaction with other components, working groups, colleagues...
 - Network, File System, underlying batch system, Applications, Security,...
- Functionality is important but also Support, Support, Support...
- Open Source distribution is the right way
 - Source for bug reports, requirements, ...
 - Higher visibility & community building

Getting UNIC#RE

Download UNICORE at

UNIC#RE OPEN SOURCE

http://www.unicore.eu

R. Breu¹, L. Clementi², Th. Fieseler¹, A. Giesler¹, P. Malfetti², R. Menday¹, L. Danta³, A. Strait¹, R. Windor¹

J. Reetz³, A. Streit¹, P. Wieder¹

Central Institute for Applied Mathematics Forschungszentrum Jülich GmbH 52425 Jülich, Germany

> ²CINECA Via Magnanelli 6/3 40033 Casalecchio di Reno, Italy

³Rechenzentrum Garching Max-Planck-Institute for Plasmaphysics 85748 Garching, Germany