The TSUBAME Now and Future---Running a 100TeraFlops-Scale Supercomputer for Everyone as a NAREGI Resource and Its Future

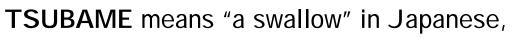
Satoshi Matsuoka, Professor/Dr.Sci.

Global Scientific Information and Computing Center

Tokyo Inst. Technology

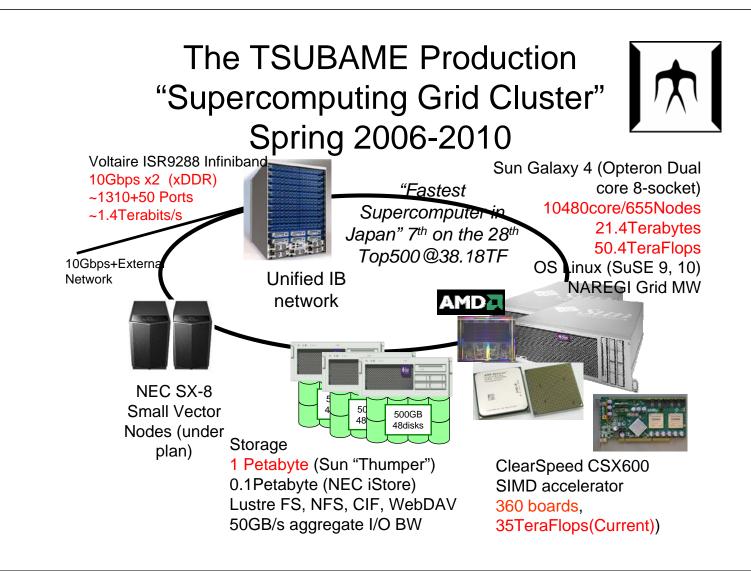
& NAREGI Project National Inst. Informatics

2


1

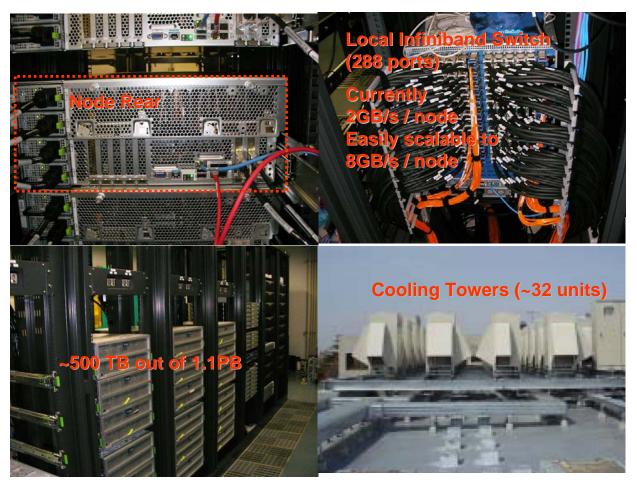
Capacity vs. Capability

TSUBAME "Grid" Cluster Supercomputer


- Tokyo-tech
- Supercomputer and
- UBiquitously
- Accessible
- Mass-storage
- Environment

Tokyo-tech (Titech)'s symbol bird, and its logo (but we are home to massive


of parakeets)



TSUBAME Global Partnership

NEC: Main Integrator, Storage, OperationsSUN: Galaxy Compute Nodes, StorageAMD: Opteron CPUVoltaire: Infiniband NetworkClearSpeed: CSX600 Accel.CFS: Parallel FSCFSNAREGI: Grid MWTitech GSIC: us

TSUBAME Architecture =

Commodity PC Cluster + Traditional FAT node Supercomputer + The Internet & Grid + (Modern) Acceleration

Design Principles of TSUBAME(1)

Capability and Capacity : have the cake and eat it, too!

- High-performance, low power x86 multi-core CPU
 - High INT-FP, high cost performance, Highly reliable
 - · Latest process technology high performance and low power
 - Best applications & software availability: OS (Linux/Solaris/Windows), languages/compilers/tools, libraries, Grid tools, all ISV Applications

- FAT Node Architecture (later)

- Multicore SMP most flexible parallel programming
- High memory capacity per node (32/64GB)
- Large total memory 21.4 Terabytes
- Low node count improved fault tolerance, easen network design
- High Bandwidth Infiniband Network, IP-based (over RDMA)
 - (Restricted) two-staged fat tree
 - High bandwidth (10-20Gbps/link), multi-lane, low latency (< 10microsec), reliable/redundant (dual-lane)
 - Very large switch (288 ports) => low switch count, low latency
 - Resilient to all types of communications; nearest neighbor, scatter/gather collectives, embedding multi-dimensional networks
 - IP-based for flexibility, robustness, synergy with Grid & Internet

10

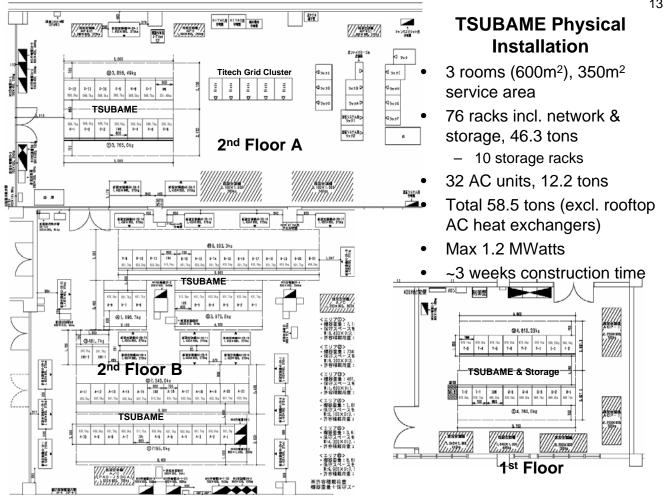
Design Principles of TSUBAME(2)

- PetaByte large-scale, high-perfomance, reliable storage
 - All Disk Storage Architecture (no tapes), 1.1Petabyte
 - Ultra reliable SAN/NFS storage for /home (NEC iStore), 100GB
 - Fast NAS/Lustre PFS for /work (Sun Thumper), 1PB
 - Low cost / high performance SATA2 (500GB/unit)
 - High Density packaging (Sun Thumper), 24TeraBytes/4U
 - Reliability thru RAID6, disk rotation, SAN redundancy (iStore)
 - Overall HW data loss: once / 1000 years
 - High bandwidth NAS I/O: ~50GBytes/s Livermore Benchmark
 - Unified Storage and Cluster interconnect: low cost, high bandwidth, unified storage view from all nodes w/o special I/O nodes or SW
- Hybrid Architecture: General-Purpose Scalar
 + SIMD Vector Acceleration w/ ClearSpeed CSX600
 - 35 Teraflops peak @ 90 KW (~ 1 rack of TSUBAME)
 - General purpose programmable SIMD Vector architecture

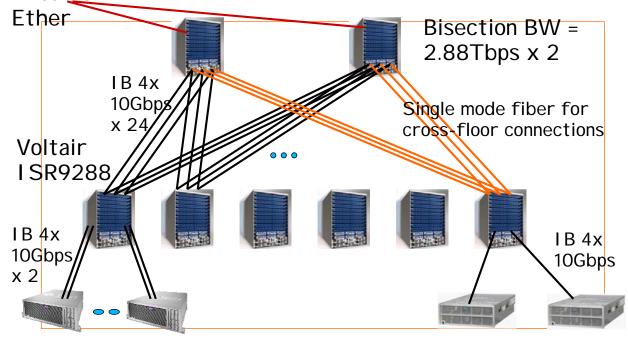
TSUBAME Timeline

- 2005, Oct. 31: TSUBAME contract
- Nov. 14th Announce @ SC2005
- 2006, Feb. 28: stopped services of old SC - SX-5, Origin2000, HP GS320
- Mar 1~Mar 7: moved the old machines out
- Mar 8~Mar 31: TSUBAME Installation
- Apr 3~May 31: Experimental Production phase 1
 - 32 nodes (512CPUs), 97 Terabytes storage, free usage
 - Linpack 38.18 Teraflops May 8th, #7 on the 28th Top500
 - May 1~8: Whole system Linpack, achieve 38.18 TF
- June 1~Sep. 31: Experimental Production phase 2 - 299 nodes, (4748 CPUs), still free usage
- Sep. 25-29 Linpack w/ClearSpeed, 47.38 TF
- Oct. 1: Full production phase
 - ~10,000CPUs, several hundred Terabytes for SC
 - Innovative accounting: Internet-like Best Effort & SLA

九州大学


TSUBAME as No.1 in Japan

Total 45 TeraFlops, 350 Terabytes


Has beaten the Earth Simulator Has beaten all the other Univ.

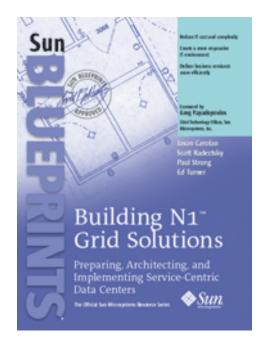
centers combined

14

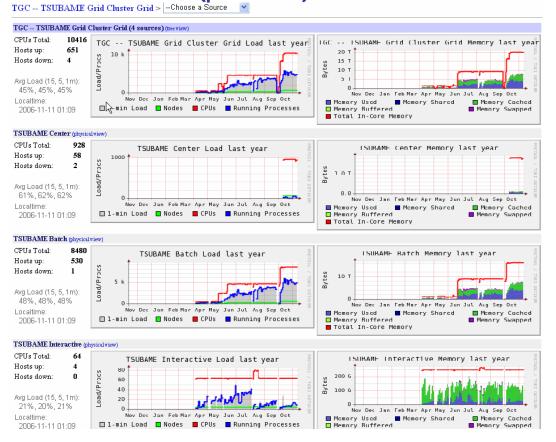
TSUBAME Network: (Restricted) External Fat Tree, IB-RDMA & TCP-IP

X4600 x 120nodes (240 ports) per switch => 600 + 55 nodes, 1310 ports, 13.5Tbps

X4500 x 42nodes (42 ports) => 42ports 420Gbps

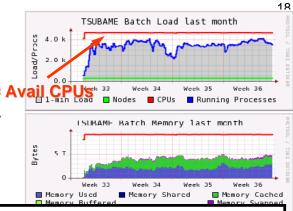

The Benefits of Being "Fat Node"

- Many HPC Apps favor large SMPs
- Flexble programming models---MPI, OpenMP, Java, ...
- Lower node count higher reliability/manageability
- Full Interconnect possible --- Less cabling & smaller switches, multi-link parallelism, no "mesh" topologies


	CPUs/Node	Peak/Node	Memory/Node	
IBM eServer (SDSC DataStar)	8, 32	48GF~217.6GF	16~128GB	
Hitachi SR11000 (U-Tokyo, Hokkaido-U)	8, 16	60.8GF~135GF	32~64GB	
Fujitsu PrimePower (Kyoto-U, Nagoya-U)	64~128	532.48GF~799GF	512GB	
The Earth Simulator	16	128GF	16GB	
TSUBAME (Tokyo Tech)	16	76.8GF+ 96GF	32~64GB	
I BM BG/L	2	5.6 GF	0.5~1GB	
Typical PC Cluster	2~4	10~40GF	1~8GB	

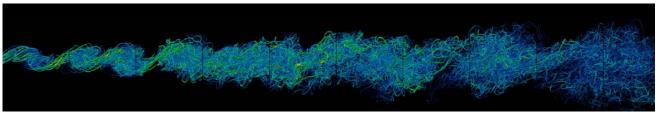
Sun Tsubame Technical Experiences to be Published as Sun Blueprints

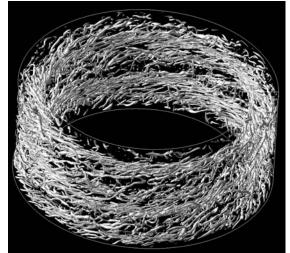
- Coming RSN
- About 100 pages
- Principally authored by Sun's On-site Engineers



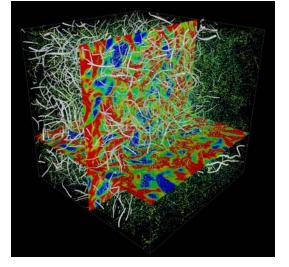
TSUBAME in Production Oct.1 2006 (phase 3) ~10400 CPUs

TSUBAME Reliability

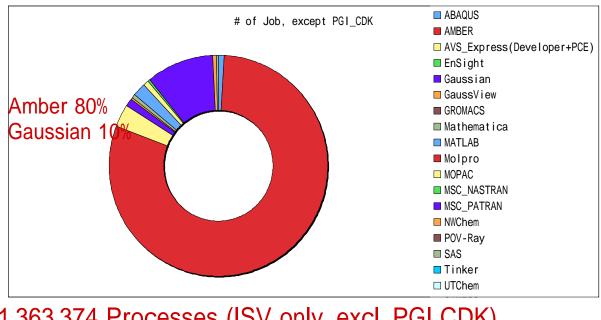

- Very High Availability (over 99%)
- Faults frequent but localized effect only
 - Jobs automatically restarted by SGE
- Most faults NOT HW, mostly SW
 Fixed with reboots & patches


TSUBAME Fault Overview 8/15/2006 - 9/8/2006

Date Faults		Compute Nodes (655 nodes)			Thumper	Total
		Overall Compute Node faults	Possible HW Faults (incl. unknowns)	HW Breakage Faults (excl. unknowns)	HDD Faults (2016 HDDs)	HW Faults
Total		-		l	[] []	_
24 Days	39	34	12	3	4	7
Per Day	1.63	1.42	0.50	0.13	0.17	0.29
Over Year	593.1	517.1	182.5	45.6	60.8	106.5
Unit MTBF (Y)	1.1043	1.26672	3.589041	14.356164	33.13973	
Unit MTBF (H)	9,674	11,096	31,440	125,760	290,304	

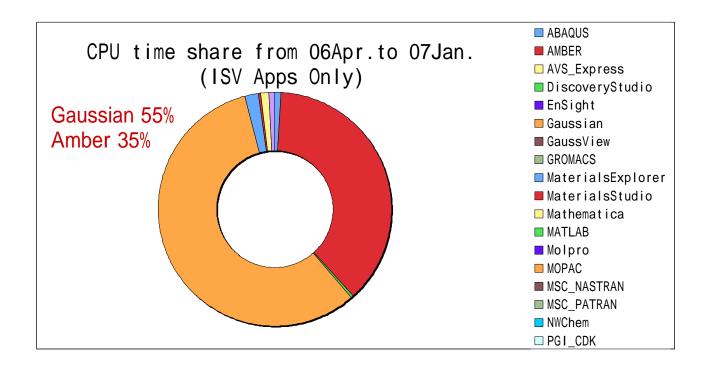

TSUBAME Applications---Massively Complex Turbulant Flow and its Visualization (by Tanahashi Lab and Aoki Lab, Tokyo Tech.)

Turbulant Flow from Airplane


Taylor-Couette Flow

TSUBAME Turbulant Flow Visualization (Prof. Tanahashi and Aoki, Tokyo Tech)

> Used TSUBAME for bot computing and vis.
> 2000CPUs for vis
>
> (parallel avs)
>
>
> 20 Billion Polygons
> 20,000x10,000 Pixels


TSUBAME Job Statistics for ISV Apps (# Processes)

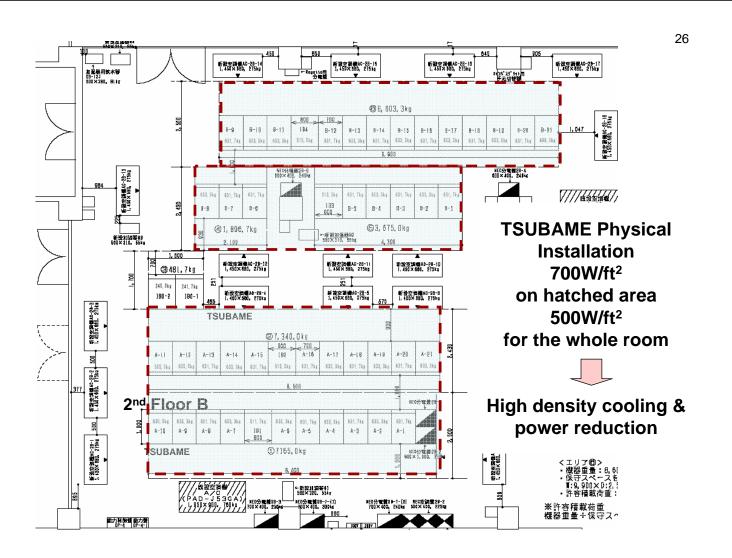
1,363,374 Processes (ISV only, excl. PGI_CDK) Approx. 5000/day (via Sun GridEngine)

22

TSUBAME Job Statistics for ISV Apps (# CPU Timeshare)

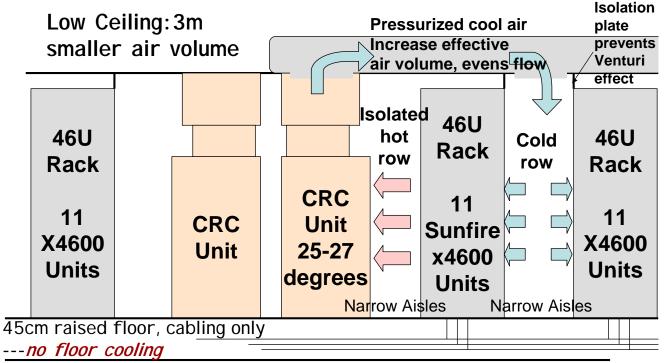
Status as of Mar 13^{th} , 2007

QUEUE	FREE NODE	REE NODE FREE CPU	
TOTAL	260	1676 CPU	5240 GB
- besl	107	783 CPU	2786 GB
- bes2	110	606 CPU	1526 GB
- default	26	112 CPU	412 GB
- gridMathem	8	128 CPU	256 GB
- high	9	47 CPU	260 GB
- sla1	0	0 CPU	0 GB
- sla2	0	0 CPU	0 GB


24

Performance/Watt of TSUBAME Comparisons with other leading Supercomputers

Machine	CPU Cores	Watts	Peak GFLOPS	Peak MFLOPS /Watt	Watts/ CPU	
TSUBAME(Opteron)	10480	800,000	50,400	63	76.336	
TSUBAME(w/ClearSpec	11,200	810,000	85,000	104.94	72.321	
Earth Simulator	5120	6,000,000	40,000	6.7	1171.9	
ASCI Purple (LLNL)	12240	6,000,000	77,824	12.971	490.2	
AIST Supercluster	3188	522,240	14400	27.574	163.81	
LLNL BG/L (rack)	2048	25,000	5734.4	229.38	12.207	
Next Gen BG/P (rack)	4096	30,000	16384	546.13	7.3242	
TSUBAME Next Gen (2010)	40000	800,000	1000000	1250	20	


TSUBAME Cooling Density Challenge

- Room 2F-B
 - 480 nodes, 1330W/node max, 42 racks
 - Rack area = 2.5m x 33.2m = 83m² = 922ft²
 Rack spaces only---Excludes CRC units
 - Max Power = x4600 nodes 1330W x 480 nodes + I B switch 3000W x 4 = 650KW
 - Power density ~= 700W/ft² (!)
 - Well beyond state-of-art datacenters (500W/ft²)
 - Entire floor area ~= 14m x 14m ~= 200m² = 2200 ft²
 - But if we assume 70% cooling power as in the Earth Simulator then total is 1.1MW still ~500W/ft²

Cooling and Cabling 700W/ft²

--- hot/cold row separation and rapid airflow---

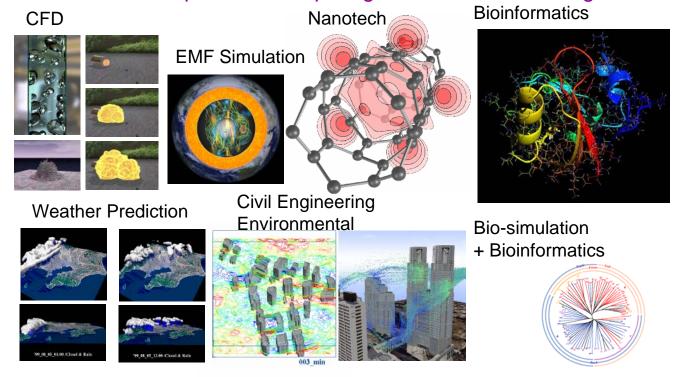
no turbulant airflow causing hotspots

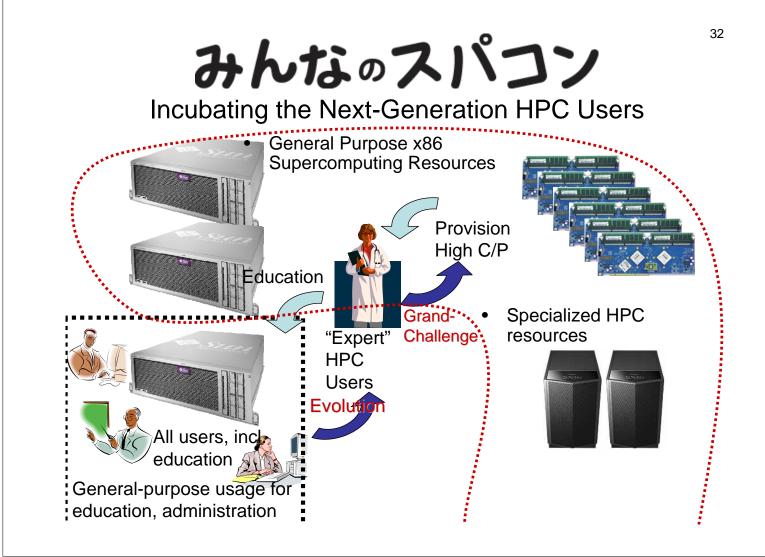
Everybody's Supercomputer **TSUBAME** as a Grid Resource

Breaking the Traditional Supercomputer and Grid **Economics**

IT Consolidation: Seamless integration of supercomputers with end-user and enterprise assive Usage Env. Gap environment •Different usage env. from Hmm, it's like my personal machine •No HP sharing with client's PC •Special HW/SW, lack of ISV support Lack of common development env. (e.g. Windows "Everybody's Supercomputer" Visual Studio) •Simple batch based, no interactive usage, Seamless, Ubiquitous access and usage aood UI =>Breakthrough Science through Commoditization of Supercomputing and

Grid Technologies

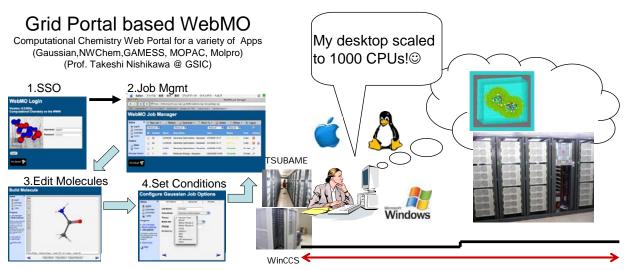

Isolated High-End

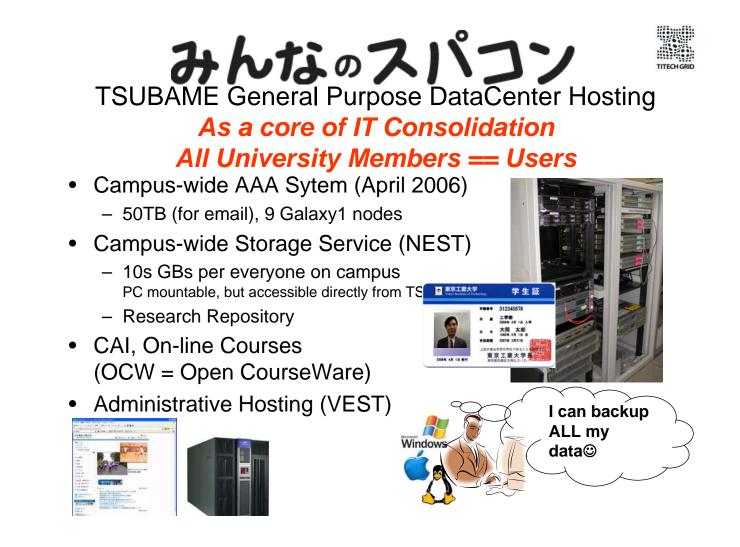

Might as

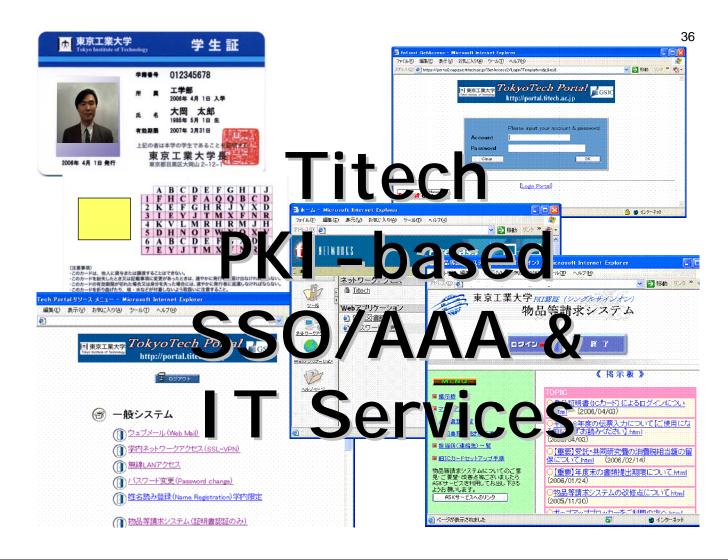
well use my Laptop

みんなのスパコン

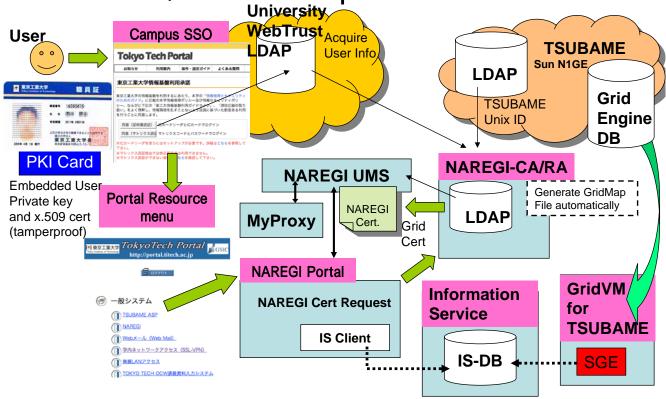
Grand Challenge Supercomputing @ Titech 100 Teraflops-scale computing with Petascale Storage

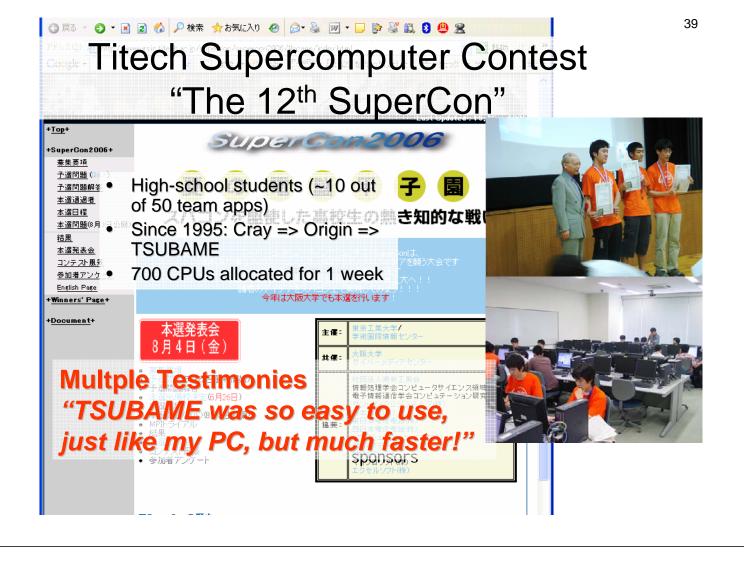



みんな。スパコン VO-Based Scheduling/Accounting Q. How do you make capability and capacity coexist? Dynamic machine-level resource allocation Three account types Small Usage: no prior allocations, small, ubiquitous resource usage (up to 16 CPUs, etc.), free Service Level Agreement: Exclusive use of each SMP node, SLA > BES > Smal allocation charge on node-time basis, expensive **Over 1300** Best Effort (new): Internet-Inspired, Inexpensive Flat allocation fee per each UNIT users Each UNIT is max 64 CPU usage at any given time Group/VO-based accounting, multiple UNITs purchasable 64CPUs 64CPUs 64CPUs 64CPUs 64CPUs 64CPUs Nano-VO 64CPUs 64CPU Max CPU=192 Jan Feb Mar

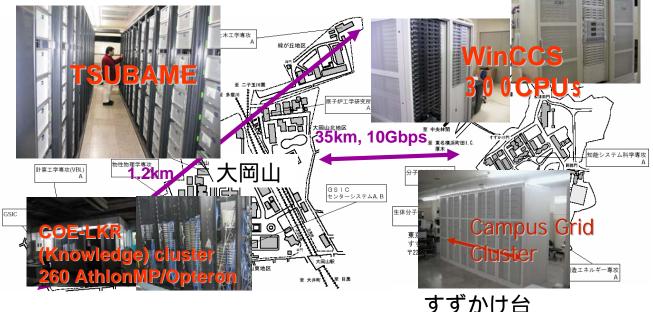


- High-End education using supercomputers in undergrad labs
 High and simulations to supplement "physical" lab courses
 - High end simulations to supplement "physical" lab courses
- Seamless integration of lab resources to SCs w/grid technologies
- Portal-based application usage



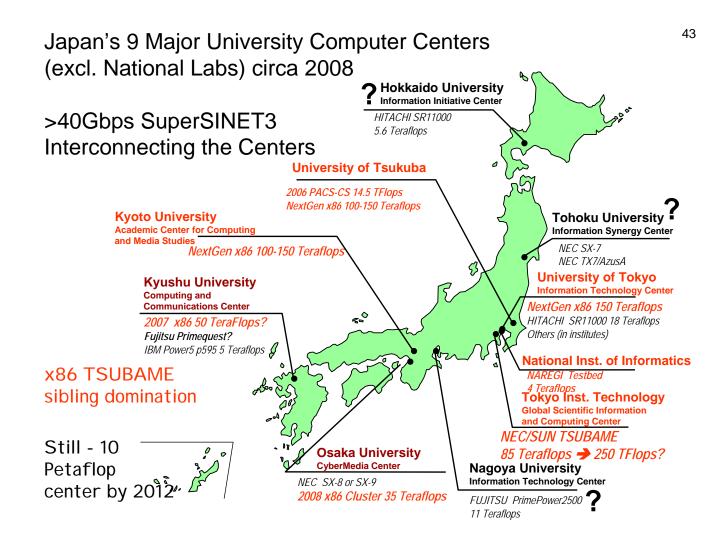


SSO WebMO Portal Access

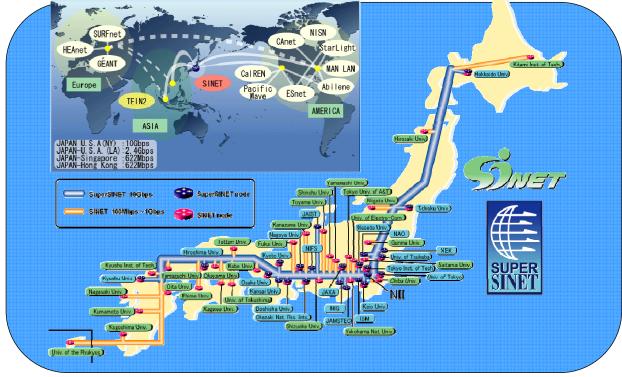

NAREGI Beta 2 Deployment@ Titech > 10,000 users per institution

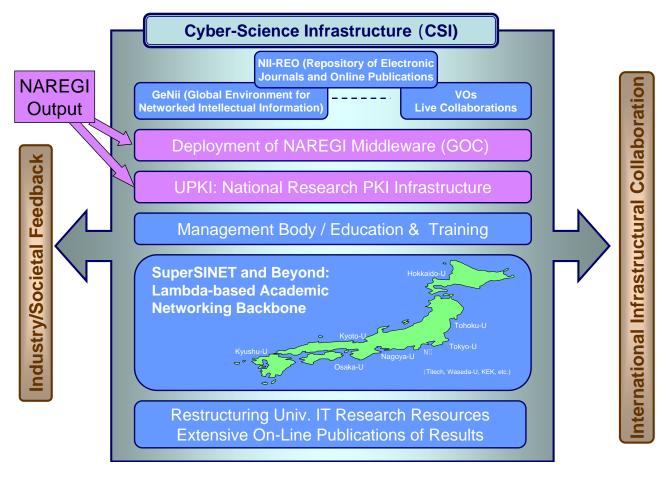
Titech Campus Grid 2006 - An x86 "DataCenter" Grid -

- ~13,000 CPUs, 90 TFlops, ~26 TBytes Mem, ~1.1 PBytes HDD
- CPU Cores: x86: TSUBAME (~10600), Campus Grid Cluster (~1000), COE-LKR cluster (~260), WinCCS (~300)
 + ClearSpeed CSX600 (720 Chips)



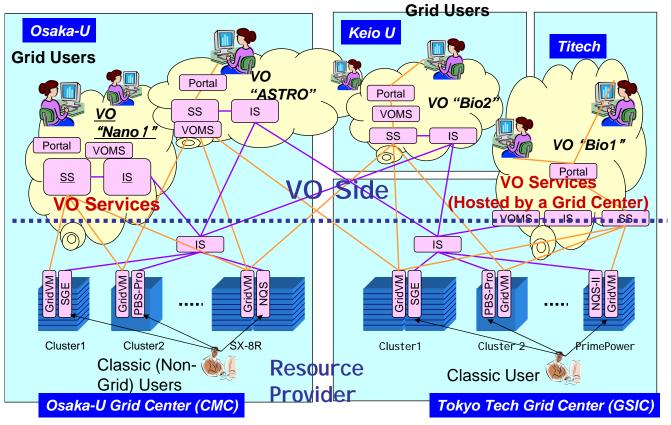
TSUBAME Siblings ---The Domino Effect on Major Japanese SCs


- Sep. 6th, U-Tokyo, Kyoto-U, and U-Tsukuba announced "common procurement procedure" for the next gen SCs in 1H2008
 - 100-150 TFlops
 - HW: x86 cluster-like SC architecture
 - NW: Myrinet10G or IB + Ethernet
 - SW: Linux+SCore, common Grid MW
- Previously, ALL centers ONLY had dedicated SCs
- Other centers will likely follow...
 - No other choices to balance widespread usage, performance, and prices
 - Makes EVERY sense for University Mgmt.
- (VERY) standardized SW stack and HW configuration
 - Adverse architecture diversity has been *impediment* for Japanese Grid Infrastructure


42 Japan's 9 Major University Computer Centers (excl. National Labs) circa Spring 2006 Hokkaido University Information Initiative Center **10Gbps SuperSINET** HITACHLSR11000 5.6 Teraflops Interconnecting the Centers University of Tsukuba FUJITSU VPP5000 PACS-CS 14.5 TFlops **Kvoto Universitv Tohoku University** Academic Center for Computing Information Synergy Center and Media Studies FUJITSU PrimePower2500 NEC SX-7 8.9 Teraflops NEC TX7/AzusA University of Tokyo Kyushu University Information Technology Center Computing and **Communications Center** HITACHI SR8000 ~^ HITACHI SR11000 6 Teraflops FUJITSU VPP5000/64 Others (in institutes) IBM Power5 p595 5 Teraflops National Inst. of Informatics ~60 SC Centers in SuperSINET/NAREGI Testbed 17 Teraflops Tokyo Inst. Technology Japan incl. Earth **Global Scientific Information** Simulator and Computing Center 2006 NEC/SUN TSUBAME - 10 Petaflop Osaka Universitv 85 Teraflops center by 2012 CyberMedia Center Nagoya University NEC SX-5/128M8 Information Technology Center HP Exemplar V2500/N FUJITSU PrimePower2500 1.2 Teraflops 11 Teraflops

Super SINET3 (new!) Dynamic L1/L2/L3 provisioning 40 Gbps Backbone

Japanese CyberScience Infrastructure Project 45



46

NAREGI Beta 2 - v.1.0 Highlights

- Production Release Candidate (2Q 2007)
- Lots of bug, performance & stability fixes
- Stable WS(RF) components and APIs (+ Globus 4.0.3)
- RPM and Dynamic, VM-based deployment
- VO and "Resource Provider" decoupling for multiple VO management by VOs and Centers
- Integration of NAREGI WF and Ninf-G GridRPC
- More BQ and systems support
 NEC SX-NQS, SGE, Fujitsu NQS... (Condor?)
- Flexible Job submission and WF management
 Non-grid jobs, non-reserved jobs, various WF tools
- EGEE-GIN Interoperation (new)
- Various Administration and Logging Tools
- Support from dedicated NAREGI support team

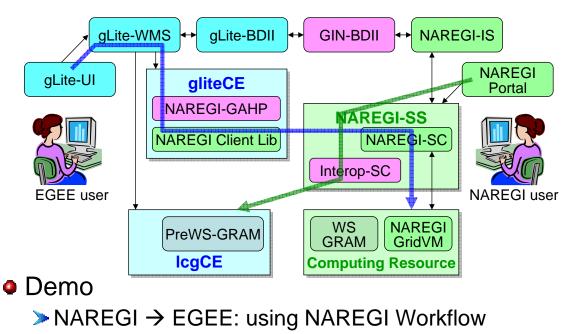
NAREGI 2 Operational Model

48

GIN (Grid Interoperation Now)

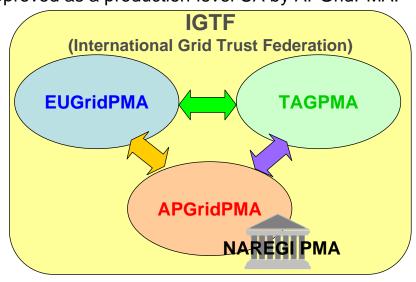
- An activity of OGF for interoperation among production grids
- Major grid projects are participating
 - ➡ EGEE, NAREGI, UK National Grid Service, NorduGrid, OSG, PRAGMA, TeraGrid, ...
- Trying to identify islands of interoperation between production grids and grow those islands

Areas


- GIN-auth: Authorization and Identity Management
- GIN-data: Data Management and Movement
- GIN-jobs: Job Description and Submission
- GIN-info: Information Services and Schema
- GIN-ops: Operations Experience of Pilot Test Applications

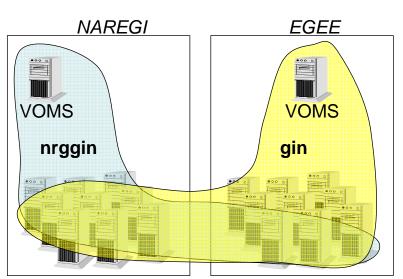
NAREGI GIN Activities

- Developing an interoperation island with EGEE
- Developing an Interoperation island with WS-GRAM based grids
- JSDL interoperability (for Phase-2)



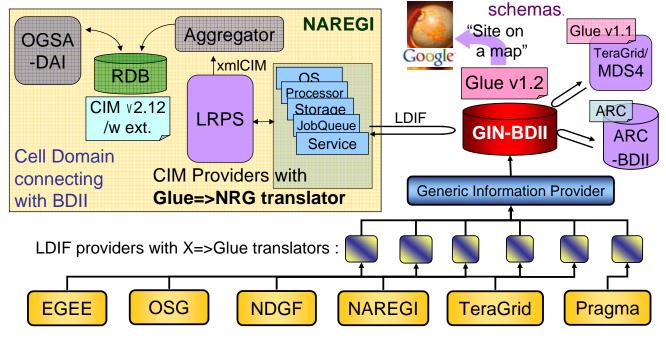
➤EGEE → NAREGI: using glite WMS commands

Authentication


- IGTF is framework of International Grid Trust Federation.
- IGTF consists of APGridPMA, EUGridPMA and TAGPMA.
- NAREGI CA joined the APGrid PMA.
- NAREGI CA has been approved as a production-level CA by APGridPMA.
- GSI compliant with x.509 proxy certificates for authentication.
- It has become available to use grid computing easily on the worldwide Internet by IGTF.

52

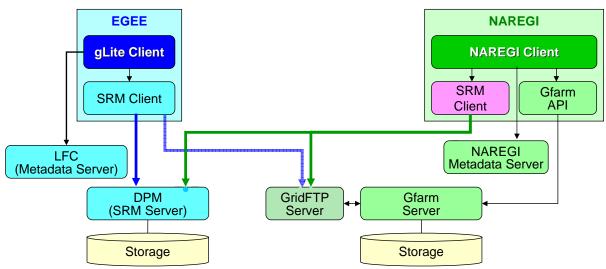
VO Management


- The GIN VO is a VOMS service.
- NAREGI uses VOMS as VO management system.
- Transport of supported authorization attributes via VOMS extensions.
- VO names are expected to abide by the VO naming conventions described in GIN VO Naming in order to avoid name conflicts between grids.
- All members of GIN VO should observe AUP(Acceptable Use Policy).

GIN-info: Architecture

All of grid information can be retrieved by each of grid in its fashion WRT resource description schema, data format, query language, client API, ...

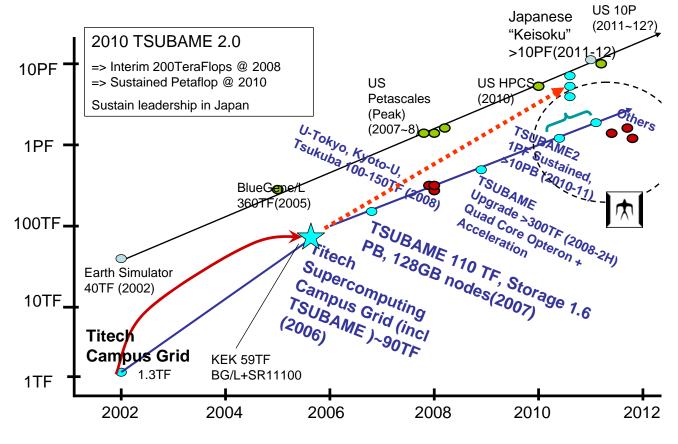
Each information service in grid acts as an information provider for the other and translator embedded in the provider performs conversion between different

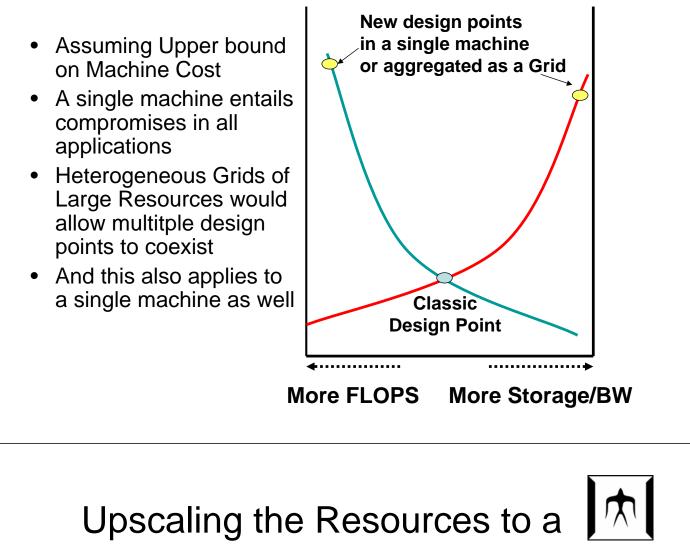


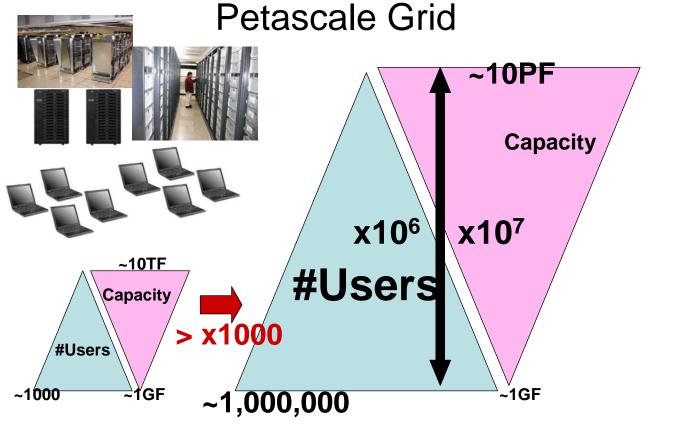
54

GIN-data: Architecture NAREGI and EGEE gLite clients can access to both

• NAREGI and EGEE gLite clients can access to both data resources (e.g., bi-directional file copy) using SRM interface.


- GridFTP is used as its underlying file transfer protocol.
- File catalog (metadata) exchange is planned.


NAREGI GIN Summary


- NAREGI developed EGEE-NAREGI island as an activity of GIN
 - > Bilateral information exchange
 - >Bilateral job submission
 - > Bilateral file exchange
 - Interoperable security properties
- Next steps
 - Improve interoperation interfaces and functions
 WS-GRAM, BES, JSDL, ...
 - > Grow the island with other EGEE partners
 - KEK will use NAREGI-EGEE interoperation environment for their high energy physics calculations

Scaling Towards Petaflops

Future Petascale Designs

