Applications of Structural Biology Al tools O ASGC

ASGC Oct. 30, 2024

Kuen-Phon Wu | 吳昆峯

Institute of Biological Chemistry, 中央研究院生物化學所 Academia Sinica

KAN I

ROTEIN

The major tools in structural biology

NMR

Computation

Al in Structural Biology is everywhere

At last — a computer program that can beat a champion Go player PME484

nature

ALL SYSTEMS GO

SONGBIRDS ALA CARTE Junihanse of rolling

SAFEGUARD TRANSPARENCY Dury to operace bactite orbitythab WHEN GENES GOT 'SELFISH' Annietack ading and dynes on NE03

autor (24) antigens (14

www.nature.com/nbt/November/2022 Vol. 40 No.11

nature biotechnology

FEEQERIAN NGHHHHHHAGOSS

Protein structure prediction

The international journal of science / 26 August 2021

nature

How AI could transform science

nature

EDITORIAL 27 September 2023

AI will transform science – now researchers must tame it

Credit: Carlo Cadenas

Updated 10 October 2023

. .

The Nobel Prize in Chemistry 2024

The Nobel Prize in Chemistry 2024 was divided, one half awarded to David Baker "for computational protein design", the other half jointly to Demis Hassabis and John M. Jumper "for protein structure prediction"

David Baker (1/2)

Demis Hassabis (1/4)

John M. Jumper (1/4)

Applications of AI in Structural Biology

A new automation solution

AlphaFold provides a new aspect of structure determination

Article Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2

Received: 11 May 2021

Accepted: 12 July 2021

Published online: 15 July 2021

Open access

Check for updates

John Jumper^{1,4}, Richard Evans^{1,4}, Alexander Pritzel^{1,4}, Tim Green^{1,4}, Michael Figurnov^{1,4}, Olaf Ronneberger^{1,4}, Kathryn Tunyasuvunakool^{1,4}, Russ Bates^{1,4}, Augustin Žídek^{1,4}, Anna Potapenko^{1,4}, Alex Bridgland^{1,4}, Clemens Meyer^{1,4}, Simon A. A. Kohl^{1,4}, Andrew J. Ballard^{1,4}, Andrew Cowie^{1,4}, Bernardino Romera-Paredes^{1,4}, Stanislav Nikolov^{1,4}, Rishub Jain^{1,4}, Jonas Adler¹, Trevor Back¹, Stig Petersen¹, David Reiman¹, Ellen Clancy¹, Michal Zielinski¹, Martin Steinegger^{2,3}, Michalina Pacholska¹, Tamas Berghammer¹, Sebastian Bodenstein¹, David Silver¹, Oriol Vinyals¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Pushmeet Kohli¹ & Demis Hassabis^{1,4}™

r.m.s.d.₉₅ = 0.8 Å; TM-score = 0.93

r.m.s.d. = 0.59 Å within 8 Å of Zn

STRUCTURE SOLVER

DeepMind's AlphaFold 2 algorithm significantly outperformed other teams at the CASP14 proteinfolding contest - and its previous version's performance at the last CASP.

AlphaFold 3.0 was released in 2024

nature

Explore content v About the journal v Publish with us v

nature > articles > article

Article Published: 08 May 2024

Accurate structure prediction of biomolecular interactions with AlphaFold 3

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger, Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, Sebastian W. Bodenstein, David A. Evans, Chia-Chun Hung, Michael O'Neill, David Reiman, Kathryn Tunyasuvunakool, Zachary Wu, Akvilė Žemgulytė, Eirini Arvaniti, Charles Beattie, Ottavia Bertolli, Alex Bridgland, Alexey Cherepanov, Miles Congreve, … John M. Jumper ☑ + Show authors

Nature (2024) Cite this article

NEWS 08 May 2024

Major AlphaFold upgrade offers boost for drug discovery

Latest version of the AI models how proteins interact with other molecules – but DeepMind restricts access to the tool.

By Ewen Callaway

An AlphaFold3 model of a bacterial enzyme bound to a chemical. Credit: Isomorphic Labs

AlphaFold 3.0 is a web-based service

From DeepMind:

Introducing AlphaFold 3, a new AI model developed by Google DeepMind and Isomorphic Labs. By accurately predicting the structure of proteins, DNA, RNA, ligands and more, and how they interact, we hope it will transform our understanding of the biological world and drug discovery.

ColabFold: AF2 core but faster than AF2

AlphaFold	AlphaFold Version: GPU with RTX3090 Resources: 15%	AlphaFold	AlphaFold Version: GPU with V100 Resources: 17%
	Launch -		Launch -
RT	X3090 24GB		V100 24GB

nature methods

OPEN ColabFold: making protein folding accessible to all

Milot Mirdita 110 M, Konstantin Schütze 2, Yoshitaka Moriwaki 3,4, Lim Heo 5, Sergey Ovchinnikov 6,710 and Martin Steinegger 2,8,9,10

ColabFold benchmarks @ ASGC

ColabFold benchmarks @ ASGC

ColabFold benchmarks @ ASGC

3090 24GB

24GB memory is not sufficient to handle >2500 residues in our experiences

3090 24GB

Run ColabFold @ DiCOS

- ColabFold provides a Jupyter script to set up input parameters.
- Easy for new comers, no need to know much about Linux and HPC settings

https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb

🗘 AlphaFold2.ipynb
File Edit View Insert Runtime Tools Help
+ Code + Text Copy to Drive
 ColabFold v1.5.5: AlphaFold2 using MMseqs2
Easy to use protein structure and complex prediction using <u>AlphaFold2</u> and <u>Alphafold2-multimer</u> . See alignments/templates are generated through <u>MMseqs2</u> and <u>HHsearch</u> . For more details, see <u>bottom</u> notebook, checkout the ColabFold GitHub and Nature Protocols.
Old versions: v1.4, v1.5.1, v1.5.2, v1.5.3-patch
<u>Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: Making protein fold</u> accessible to all. <i>Nature Methods</i> , 2022
> Input protein sequence(s), then hit Runtime -> Run all
query_sequence: PIAQIHILEGRSDEQKETLIREVSEAISRSLDAPLTSVRVIITEMAKGHEGIG
 Use : to specify inter-protein chainbreaks for modeling complexes (supports homo- and
jobname: "[test
num_relax: 0
 specify how many of the top ranked structures to relax using amber
template_mode: none
 none = no template information is used. pdb100 = detect templates in pdb100 (see not

Run ColabFold @ DiCOS

- ColabFold provides a Jupyter script to set up input parameters.
- Easy for new comers, no need to know much about Linux and HPC settings

it parameters. ut Linux and HPC settings

AlphaFold2_batch_1.5.5-D.i×	🖪 AlphaFold2-v153-NME3-he 🗨	
⊖ 🕨 Code 🗸		🗰 Python 3 🤇
<pre>tein sequence(s), then hit import files</pre>	`Runtime` —> `Run all`	
ersion_info f"{version_info.major}.{ver	sion_info.minor}"	
: shlib.sha1(y.encode()).hexd	ligest()[:5]	
'DREPQHEELPGLDSQWRQIENGESGR	ERPLRAGESWFLVEKHWYKQWEAYVQ	GGDQDSSTFPGCINNATLFQDEINWRLKEGLVEGEDYVLLPAAAWHYLVSWYGLEHGQP
`:` to specify inter-prote @param {type:"string"}	in chainbreaks for ∗∞xmodel:	ing complexes** (supports homo- and hetro-oligomers). For e
s to use aram [0, 1, 5] {type:"raw"} ify how many of the top ran none" #@param ["none", "pdb e` = no template informatio	ked structures to relax us. 70","custom"] on is used. `pdb70` = detec	ing amber t templates in pdb70. `custom` — upload and search own temp
elax > 0		
<i>ces</i> "".join(query_sequence.spli	t())	
join(jobname.split()) sub(r'∖₩+', '', basejobname h(basejobname, query_sequen	ice)	
ory with jobname exists : ts(folder):		

#ColabFold v1.5.5: AlphaFold2 w/ MMseqs2 BATCH

Easy to use AlphaFold2 protein structure (Jumper et al. 2021) and complex (Evans et al. 2021) prediction using multiple sequence alignments generated through MMseqs2. For details, refer to our manuscript:

Mirdita M, Schütze K, Morlwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: Making protein folding accessible to all. Nature Methods, 2022

Usage

input_dir directory with only fasta files or MSAs stored in Google Drive. MSAs need to be A3M formatted and have an .a3m extention. For MSAs MMseqs2 will not be called.

result_dir results will be written to the result directory in Google Drive

Old versions: v1.4, v1.5.1, v1.5.2, v1.5.3-patch

For more details, see bottom of the notebook and checkout the ColabFold GitHub.

News

- 2023/07/31: The ColabFold MSA server is back to normal. It was using older DB (UniRef30 2202/PDB70 220313) from 27th ~8:30 AM CEST to 31st ~11:10 AM CEST.
- 2023/06/12: New databases! UniRef30 updated to 2023_02 and PDB to 230517. We now use PDB100 instead of PDB70 (see notes in the main notebook).
- 2023/06/12: We introduced a new default pairing strategy: Previously, for multimer predictions with more than 2 chains, we only pair if all sequences taxonomically match ("complete" pairing). The new default "greedy" strategy pairs any taxonomically matching subsets.

```
[1]: #@title Mount google drive
     from sys import version_info
```

python_version = f"{version_info.major}.{version_info.minor}"

•[2]: #@title Input protein sequence, then hit `Runtime` -> `Run all'

```
input_dir = 'B/seq' #@param {type:"string"}
result_dir = 'B/results' #@param {type:"string"}
 t number of models to use
 @markdown ----
 #@markdown ### Advanced settings
msa_mode = "MMseqs2 (UniRef+Environmental)" #@param ["MMseqs2 (UniRef+Environmental)", "MMseqs2 (UniRef only)", "single_sequence")
num_models = 5 #@param [1,2,3,4,5] {type:"raw"}
num_recycles = 3 #@param [1,3,6,12,24,48] {type:"raw"}
stop_at_score = 100 #@param {type:"string"}
 #@markdown — early stop computing models once score > threshold (avg. plddt for "structures" and ptmscore for "complexes")
use_custom_msa = False
num_relax = 1 #@param [0, 1, 5] {type:"raw"}
use_amber = num_relax > 0
relax_max_iterations = 200 #@param [0,200,2000] {type:"raw"}
use_templates = False #@param {type:"boolean"}
do_not_overwrite_results = True #@param {type:"boolean"}
zip_results = False #@param {type:"boolean"}
```


Batch mode runs more

- ColabFold provides a Jupyter script to set up input parameters.
- Easy for new comers, no need to know much about Linux and HPC settings
- ColabFold Batch (now v1.5.5) can run multiple sequences (one by one) in one click!
- 100 sequences (~500 residues) took about :
 - 10-12 hours without "relax"
 - 20-24 hours with "relax"

16

Run ColabFold @ DiCOS with "relax"

#@title Input protein sequence, then hit `Runtime` -> `Run all`

```
input_dir = 'B/seq' #@param {type:"string"}
result_dir = 'B/results' #@param {type:"string"}
```

```
# number of models to use
#@markdown ----
#@markdown ### Advanced settings
msa_mode = "MMseqs2 (UniRef+Environmental)" #@param ["MMseqs2 (
num_models = 5 #@param [1,2,3,4,5] {type:"raw"}
num_recycles = 3 #@param [1,3,6,12,24,48] {type:"raw"}
stop_at_score = 100 #@param {type:"string"}
#@markdown — early stop computing models once score > threshold
use_custom_msa = False
num_relax = 1 #@param [0, 1, 5] {type:"raw"}
use_amber = num_relax > 0
relax_max_iterations = 200 #@param [0,200,2000] {type:"raw"}
use_templates = False #@param {type:"boolean"}
do_not_overwrite_results = True #@param {type:"boolean"}
zip_results = False #@param {type:"boolean"}
```

- ColabFold and AlphaFold both calculate "5" models and rank the models with multiple metrics.
 - Numbered as 1, 2, 3, 4, 5
 - Model 1 is the best ranked structure (more) reliable).
 - It is known that AlphaFold2 (not 3) doesn't place the sidechain well. It often create steric clashes. Hence low reliability for drug discovery.
- - ColabFold integrates "Amber" to run "relax" process - using simple <u>relax function</u> in molecular dynamic simulation to place the sidechain in a more appropriate space. -> increase quality of predicted model.
 - The 'relax" calculation takes another 5-10 minutes (depending on protein size).

17

Amber relax improves the quality of predicted structure

RosettaFold and its succedent

RoseTTAFold	RoseTTAFold Version: GPU with rtx3090 Besources: 12%	
		Protein Sequence MVETSQLRY
	Launch -	

- Rosetta (original)
- RoseTTAFold (Deep learning)
- RoseTTAFold All-Atom
- RFDiffusion All-Atom

Structure

https://github.com/baker-laboratory

Generated AI and structural biology

RFDiffusion	RFDIFFUSION Version: 2023 on GPU V00
Resources: 2	:0%
	Launch -

- RFDiffusion (RFD)
- RFDiffusion All-Atom (RFDAA)

Described at Baker Lab:

"Inspired by AI image generators, RFdiffusion can be used to create novel protein structures in seconds. It sculpts clouds of disconnected atoms into novel protein backbones, yielding monomers, oligomers, binders, and more. Initially trained only on amino acids, RFdiffusion All-Atom now builds molecules using all of life's building blocks, including DNA, RNA, ions, and small molecules."

https://github.com/baker-laboratory/rf_diffusion_all_atom

Generated AI and structural biology

https://github.com/baker-laboratory/rf_diffusion_all_atom

BindCrarft—An integrated pipepline for protein design

BindCraft: one-shot design of functional protein binders

Martin Pacesa¹‡, Lennart Nickel¹‡, Joseph Schmidt¹, Ekaterina Pyatova¹, Christian Schellhaas¹, Lucas Kissling², Ana Alcaraz-Serna³, Yehlin Cho⁴, Kourosh H. Ghamary⁵, Laura Vinué⁵, Brahm J. Yachnin⁵, Andrew M. Wollacott⁵, Stephen Buckley¹, Sandrine Georgeon¹, Casper A. Goverde¹, Georgios N. Hatzopoulos⁶, Pierre Gönczy⁶, Yannick D. Muller³, Gerald Schwank², Sergey Ovchinnikov^{4*}, Bruno E. Correia^{1*}

¹ Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics; Lausanne, Switzerland

² Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland

³ Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne; Lausanne, Switzerland

⁴ Massachusetts Institute of Technology; Cambridge, MA, USA

5 Visterra Inc., Waltham, MA, USA

⁶ Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.

https://www.biorxiv.org/content/10.1101/2024.09.30.615802v1 Posted online October 1, 2024

https://github.com/martinpacesa/BindCraft

BindCrarft—An integrated pipepline for protein design

In our own test

- Generate 100 "acceptable" model
- Nvidia Rtx 4070 (16GB): 19-25 hours
- Nvidia Rtx 3090 (24GB): 20-35 hours
- Nvidia Rtx 2080 (12GB): 92-120 hours
- A100 (40GB or higher) is suggested by the author.

A diffusion model to protein-ligand docking

diffdock Version: 2023 on GPU V00

Resources: 20%

ligand & protein

t=T

DIFFDOCK

reverse diffusion over translations, rotations and torsions

A diffusion model to protein-ligand docking

For a job docking ~4000 compounds, it took:

- 3-4 weeks by 24-core, 48-thread CPUs (Intel Xeon Silver 4116 2.1 GHz)
- 1-2 days by ONE Nvidia Rtx 4090 24GB GPU card (no parallel setting)

https://github.com/gcorso/DiffDock

Everything in the cloud – NMR application

NMR Software Version: CPU Resources: 50%	
Open	

- DiCOS system has a NMR app
- Please go to https://dicos.grid.sinica.edu.tw/resources to apply an account (not limited to AS users)
- So far, NMRpipe, masterHI, Poky, NMRFam-Sparky, Xplor-NIH are installed (need to debug a bit more)

Everything in the cloud -cryoEM application

CryoSPARC

RELION	RELION 3 Version: V3.0.8 Resources: 0%	RELION	RELION 3.1 Version: V3.1 Resources: 0%	RELION	RELION 3.1 P10 Version: V3.1 Resources: 100%
	Launch -		Launch -		Launch -
RELON	RELION 4 beta Version: V4 Resources: 0%	RELION	RELION 4 1080ti Version: V4.01 Resources: 0%	RELION	RELION 4 P100 Version: V4.01 Resources: 100%
	Launch -		Launch -		Launch -
RELION	RELION 5 beta P100 Version: V5 beta Resources: 100%) (
	Launch -				
CIPION	Launch - Scipion3 Version: P100		Warp Version: V100		

Suite for Al-based protein-related software

Structure Prediction	Protein Design	
AlphaFold-Full DB	RFDiffusion	
AlphaFold/ColabFold	RFD-all atom	
RosettaFold	RosettaFold-PPI	
RosettaFold-NA	ProteinMPNN	
	BindCraft	

NMR-app bundle

CryoDRGN

Thanks ASGC for the stable and affordable resource

ASGC研究型服務收費(ASGC Pricing)

本表各系統每二十四小時使用量之單價(以 CPUCore-Day 或 GPUBoard-Day 計算)。

(Last Updated: Jun. 2024. Pricing model will be reviewed and revised annually.)

	Computi	ng Pricing 計算服務	
Model	Computing Usage * NTD\$	國內非學術單位使用者	國外學術單位
CPU-FDR5	CPUCore-Day * NTD\$0.24		
CPU-EDR1	CPUCore-Day * NTD\$1.2		
CPU-HDR1	CPUCore-Day * NTD\$0		
GPU-1080Ti	GPUBoard-Day * NTD\$1	加計 50%	加計 50%
GPU-P100	GPUBoard-Day * NTD\$8		
GPU-RTX3090	GPUBoard-Day * NTD\$40		
GPU-V100	GPUBoard-Day * NTD\$35		
GPU-A100	GPUBoard-Day * NTD\$120		
	Storage Prici	ng (TB) 儲存與擷取服務	
Storage	Unit Cost(NTD\$)	國內非學術單位使用者	國外學術單位
YEAR	NTD\$1000 * per TB-year	tott coor	totat cos
DAY	NTD\$3 * per TB-day		
	Data Trar	ısmission 資料傳輸	
	目:	前未納入計費	
	Customiza	tion Service 進階服務	1 1
	依據所需人時計算。額外 將另按工時計費(每	需開發之軟體、系統或使用介面等, 168 man-hr 為 NTS 100,000)	

			Comment 🛛 😩	Share 🏚 🄇
1		••• A10	00 RAM	+ Gemini
	Resources \times			
師者	You are not subscrib Available: 97.17 con Usage rate: approxim	oed. <mark>Learn more</mark> npute units mately 10.59 per hour	100 "Comp 1 hour need 9.4 hours a	oute units" = \$ ds 10.59 unit, vailable
	Manage sessions	ession.		
	Python 3 Google Co	mpute Engine backend	(GPU)	
明者	Showing resources	from 1:57 PM to 2:07 P	M	
	System RAM 4.9 / 83.5 GB	GPU RAM 30.2 / 40.0 GB	Disk 47.2 / 112.6 GB	

