Application of bioacoustics in marine conservation

May 14, Cebu, Philippine

Tomonari Akamatsu (Fisheries Research Agency, Japan)

1. To see aquatic animals by listening

Finding finless porpoise: Level 1

Finding finless porpoise: Level 2

Finding finless porpoise: Level 3

Detection range	
	net or trap
	2 m

Detection range		
camera	net or trap	
\ominus	o 2 m	
10 m	2 111	

2. Sound of aquatic animals

What is this?

What is this?

©Kasumi Tagui

What is this sound?

?

http://www.aquabio.com/sousa-chinensis.html

x20

3. Basics of acoustics

What is sound?

http://www.soundproofingcompany.com/soundproofing101/what-is-sound/

Frequency and wavelength

http://www.soundproofingcompany.com/soundproofing101/what-is-sound/

イラストさんぽ http://67977865.at.webry.info/

http://www.soundproofingcompany.com/soundproofing101/what-is-sound/

http://www.soundproofingcompany.com/soundproofing101/what-is-sound/

v=1500m/s f=4MHz

 $\lambda = v/f$

Wavelength $\lambda(m) =$ sound velocity (m/s) / frequency (Hz)

absorption

Human have been listening underwater low frequency sounds.

Any examples?

Munk et al. (1994) The Heard Island feasibility test, J. Acoust. Soc. Am. 96(4), 2330-2342

Air gun

https://mininginmalawi.com/2013/12/06/cons iderations-related-to-seismic-surveying-in-lakemalawi-dave-kienzler-fulbright-clinton-fellowin-malawis-ministry-of-mining/

Science 28 Aug 1998: Vol. 281, Issue 5381, pp. 1327-1332

Global warming : good or bad for whales?

GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L19601, doi:10.1029/2008GL034913, 2008

Unanticipated consequences of ocean acidification: A noisier oc at lower pH

Keith C. Hester,1 Edward T. Peltzer,1 William J. Kirkwood,1 and Peter G. Brewerl

Full Article

Figure 3. Percent difference in sound absorptivity in seawater between 0.01 to 1000 kHz for (a) a decrease in pH from 0.15 to 0.6 and (b) lower pH accompanied with a 3 $^{\circ}$ C increase (initial conditions: S = 35, T = 12 $^{\circ}$ C, pH = 8.1, D = 0.05 m).

http://www.mbari.org/news/news_releases/2008/co2-sound/co2-sound-release.html

Gap and mirror

Akamatsu et al. 2002

Hide and communicate; a quiet window hypothesis (Lugli 2010)

