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Computing resource
& accessible end point

● tidc-ui[01~04].grid.sinica.edu.tw (UI)
– tidc-ui[01,03] : CentOS7 worker nodes (to be decommissioned)

● tidc-ui02 is under maintenance...
– tidc-ui04: Alma9 worker nodes

● Will add tidc-ui05 in the future.
– ssh UI, Condor scheduler, job submitter.
– Accessible by ssh client with dicos account.

● tidc-arc6-1.grid.sinica.edu.tw (ARC CE)
– Under to migration to Condor-CE with Alma9 (ongoing)
– Grid CE.
– Accessible by CMS Crab3 with grid certificate
– There will be Condor-CE in the future: tidc-condor-cm.grid.sinica.edu.tw



  

Storage Access
● EOS:

– By xrootd:
● root://tidc-smstor1.grid.sinica.edu.tw/eos/

– By filesystem access. (fuse)
● /eos

● Shared filesystem
– /ceph/work/<group name>



  

Resources
● Condor cluster

– 768 cores(AMD EPYC 7713) : CentOS7
– 3072 cores (AMD EPYC 9654, Genoa ): Alma9

● Another 1920 cores will be coming (AMD EPYC 9645, Turin )

● EOS storage
– 649.99 TB

● Ceph filesystem
– 3TB per group.

● Can be extended.
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Condor scheduler
● The scheduler(submitter) is distributed

– Each schedd manages their own jobs.
● e.g. if tidc-ui01 crashes, all of your submitted and running 

jobs from tidc-ui01 will:
– Be in held state, if the machine can be recovered.

● You can rerun it, but the job will restart from fresh unless you do 
check-point by yourself.

– All gone, if the machine can’t be recovered.

– So, please use Condor UI wisely, please be gentle 
with UI. :)



  

Condor scheduler
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Your first job



  

Tutorial files
● /ceph/sharedfs/software/tutorial/condor/

– Jobmission files:
● condor.jdl
● condor_queue_index2.jdl
● condor_queue_random.jdl

– Job script
● test.sh

● Copy them to your home, if you wanna play with it.
–  cp /ceph/sharedfs/software/tutorial/condor/*  ~/ 



  

Preparing your condor job
● To submit a condor job, we need:

– 1. Condor submission file
● Handling files:

– job executable, job standard out & error, input, output, condor log.
● Defining job requirement: 

– CPU, memory, disk space.

– 2. Job executable file. ( binary code or script )
– 3. Input file (optional)
– 4. Output file (optional)



  

Job submission file (1/4)
● executable:

– Where your executable is.
● It can be binary or shell script
● Remember to set executable 

permission:
–   chmod +x <your job file>  

● arguments:
– Your argument for executable.

● should_transfer_files:
– yes/no/IF_NEEDED
– Default: yes

executable   = /ceph/work/ASGC/felixlee/test.sh
arguments    = yes I do 1 2 3

output       = outputfile.$(ClusterId).$(ProcId).out
error        = errorfile.$(ClusterId).$(ProcId).out
log          = myexe.$(ClusterId).$(ProcId).log

request_cpus   = 1
request_memory = 1024
request_disk   = 10240

#should_transfer_files = yes

queue



  

Job submission file (2/4)
● output:

– Job stdout file name
● error:

– Job stderr file name
● log:

– Condor job log file 
name

executable   = /ceph/work/ASGC/felixlee/test.sh
arguments    = yes I do 1 2 3

output       = outputfile.$(ClusterId).$(ProcId).out
error        = errorfile.$(ClusterId).$(ProcId).out
log          = myexe.$(ClusterId).$(ProcId).log

request_cpus   = 1
request_memory = 1024
request_disk   = 10240

#should_transfer_files = yes

queue



  

Job submission file (3/4)
● request_cpus:

– Asking how many cores
● request_memory:

– Asking memory in MB
● request_disk:

– Asking disk in KB

executable   = /ceph/work/ASGC/felixlee/test.sh
arguments    = yes I do 1 2 3

output       = outputfile.$(ClusterId).$(ProcId).out
error        = errorfile.$(ClusterId).$(ProcId).out
log          = myexe.$(ClusterId).$(ProcId).log

request_cpus   = 1
request_memory = 1024
request_disk   = 10240

#should_transfer_files = yes

queue



  

Job submission file (4/4)
● queue [number]

– Put job into queue.
● If follows with numbers, 

it means queuing # of 
jobs.

– e.g. queue 10
● If no number is given, 

by default it means 
queuing one job.

executable   = /ceph/work/ASGC/felixlee/test.sh
arguments    = yes I do 1 2 3

output       = outputfile.$(ClusterId).$(ProcId).out
error        = errorfile.$(ClusterId).$(ProcId).out
log          = myexe.$(ClusterId).$(ProcId).log

request_cpus   = 1
request_memory = 1024
request_disk   = 10240

#should_transfer_files = yes

queue



  

More on job submission file
executable   = /ceph/work/ASGC/felixlee/test.sh
arguments    = yes I do 1 2 3

output       = outputfile.$(ClusterId).$(ProcId).out
error        = errorfile.$(ClusterId).$(ProcId).out
log          = myexe.$(ClusterId).$(ProcId).log

request_cpus   = 1
request_memory = 1024
request_disk   = 10240

#should_transfer_files = yes

queue

● Submission file supports 
variables
– Useful embedded variables

● $(ClusterId), $(ProcId)
– You can also define your own 

variables.
● MyIndex  = “hello”

– Useful macros:
● $RANDOM_INTEGER(min, max[, 

step])
● $INT(item-to-convert, format-

specifier)



  

Playing with multiple jobs (1/4)
executable   = /ceph/work/ASGC/felixlee/test.sh

output       = outputfile.$(ClusterId).$(ProcId).out
error        = errorfile.$(ClusterId).$(ProcId).out
log          = myexe.$(ClusterId).$(ProcId).log

MyIndex = $(ProcId) * 10
arguments = $INT(MyIndex, %04d)

queue 4

● Queue multiple jobs 
with auto-generated 
arguments.
– $INT() case.
– The arguments will be:

● 0000, 0001, 0002, 0003



  

Playing with multiple jobs (2/4)
executable   = /ceph/work/ASGC/felixlee/test.sh

output       = outputfile.$(ClusterId).$(ProcId).out
error        = errorfile.$(ClusterId).$(ProcId).out
log          = myexe.$(ClusterId).$(ProcId).log

arguments = $RANDOM_INTEGER(0, 100)

queue 4

● Queue multiple jobs 
with auto-generated  
arguments.
– $RANDOM_INTEGER(

) case.



  

Playing with multiple jobs (3/4)
executable   = /ceph/work/ASGC/felixlee/test.sh

output       = outputfile.$(ClusterId).$(ProcId).out
error        = errorfile.$(ClusterId).$(ProcId).out
log          = myexe.$(ClusterId).$(ProcId).log

input = file1
arguments = -a -b 26
queue

input = file2
arguments = -c -d 92
queue

● “queue” can be also 
specified multiple 
times with different 
segments.



  

Playing with multiple jobs (4/4)
executable   = /ceph/work/ASGC/felixlee/test.sh

output       = outputfile.$(ClusterId).$(ProcId).out
error        = errorfile.$(ClusterId).$(ProcId).out
log          = myexe.$(ClusterId).$(ProcId).log

queue input, arguments from (
  file1, -a -b 26
  file2, -c -d 92
)

● “queue” can be also 
tuple like:
– queue [variable] from (

 -a -b 26
 -c -d 92
)



  

Job flavours (1/2)
● Used to specify 

walltime.
– To avoid resource 

abuse.
● Usage:

– +JobFlavour = “keyword”
● If JobFlavour is missing, 

system will use “default”

executable   = /ceph/work/ASGC/felixlee/test.sh
arguments    = yes I do 1 2 3

output       = outputfile
error        = errorfile
log          = myexe.log

request_cpus   = 256
request_memory = 1024
request_disk   = 10240

#should_transfer_files = yes
+JobFlavour = "large"

queue



  

Job flavours (2/2)
● default

– Walltime = 1 day
– Cpu = 1

● short
– Walltime = 3 days

● large
– Walltime = 14 days

● devel
– Walltime = 1 hour

● long_serial
– Walltime = 14 days
– Cpu = 1

executable   = /ceph/work/ASGC/felixlee/test.sh
arguments    = yes I do 1 2 3

output       = outputfile
error        = errorfile
log          = myexe.log

request_cpus   = 256
request_memory = 1024
request_disk   = 10240

#should_transfer_files = yes
+JobFlavour = "large"

queue



  

Submitting and monitoring job
● To submit job(s):

– condor_submit  your_jdl_file

● Monitoring job(s):
– condor_q 



  

Handling files with condor 101
● Unlike slurm, when condor job reaches worker node, it won’t land 

at directory where you submitted job from.
– e.g. you run “condor_submit condor.jdl” from home directory, but condor 

job will not get executed from your home.
● Instead, it will create another temporary working directory and run jobs from there.

– So, recommend to “cd” to global working directory in your script whenever 
needed.

– Also, if you don’t make should_transfer_files, please put absolute path into 
executable for your job script.

● Let condor handling output doesn’t always work somehow.
– So, strongly recommend to handle output by your scripts.



  

Manage your jobs



  

● condor_q 

More on monitoring (1/5)



  

● condor_q 

More on monitoring (2/5)



  

● condor_q -nobatch
– ST(job state): R(running), I(Idling), H(Holding), 

C(Completed)

More on monitoring (3/5)



  

More on monitoring (4/5)
● condor_q 

Summary of your 
job status



  

More on monitoring (5/5)
● condor_q 

Summary of all jobs
(Yours and other user’s)



  

● condor_q -global

Check jobs from all schedulers



  

Analyzing why job doesn’t get running
● condor_q -analyze [job id]

– Job id is the combination of ClusterId and ProcId.
● e.g. 150.0

– Where the “150” is ClusterId and “0” is ProcId.
– The ProcId is serial integer when “queue” multiple jobs. 

● e.g. queue 4, we will get:
● 150.0, 150.1, 150.2, 150.3

– You can omit ProcId, it will query all jobs under the 
same ClusterId.



  

Analyzing why job doesn’t get running
● condor_q -analyze [job id]

The case when job is simply 
queuing.



  

Analyzing why job doesn’t get running
● condor_q -analyze [job id]

The case when job is rejected 
by worker nodes.



  

Get more detailed job match analysis
● condor_q -better-analyze [job id]



  

Get more detailed job match analysis
● condor_q -better-analyze [job id]

The case when job is rejected 
by worker nodes.



  

Get more detailed job match analysis
● condor_q -better-analyze [job id]

Detailed matching status

All of your job requirements and conditions



  

Get more detailed job match analysis
● condor_q -better-analyze [job id]

Check the “Slots Matched” column, 
where the value is “0”



  

Get more detailed job match analysis
● condor_q -better-analyze [job id]

Check the “Slots Matched” column, 
where the value is “0”

Asking too many CPUs...



  

More on condor_q
● condor_q -help 



  

Delete your jobs
● condor_rm <your job id1> [<job id2> … <job idn>]

– Delete your job by job id, where the job id can be specified multiple times:
●  condor_rm 11 12 10  

– Be aware of that, if you specific job id without ProcId, it means to delete all 
ProcId under the same ClusterId.

● e.g. condor_rm 11 means to delete 11.0, 11.1,…, 11.x
● And, condor_rm 11.0 means to delete only 11.0

● condor_rm -all 
– It will delete all of your jobs, use it carefully…

● condor_rm -help
– More options on condor_rm



  

Other commands
● condor_release <job id>

– Used when job is in hold state.
– Usually, the jobs will be held by several reasons.

● Schedd machine gets rebooted.
● Worker encounters so problems.
● You hold it by yourself with condor_hold.

– The condor_release will get job restarted from fresh.
● condor_hold <job id>

– Suspend your job, it can be resumed by condor_release.



  

Data flow and data handling



  

EOS space (1/3)
● How to access EOS via local cluster?

– It can be accessed by xrootd tool with xrootd url ( w/o Grid proxy, it’s Read-only )
● Xrootd url:  root://tidc-smstor1.grid.sinica.edu.tw//<eos path>
● Xrdcp

–  xrdcp   <xrootd url>  .  
● C++ or python Root API

– std::unique_ptr<TFile> myFile( TFile::Open("root://tidc-smstor1.grid.sinica.edu.tw//eos/cms/store/user/
felixlee/file.root") ); 

– Or simply by generic Unix file operation. (fuse mount)
●  ls  /eos/cms/store/  
●  cp  /eos/cms/store/user/felix/file.root   .  

● Current EOS directory structure:
– /eos/cms/store/data    -- <CMS production data>
– /eos/cms/store/mc      -- <CMS mc production data>
– /eos/cms/store/user    -- <CMS user data>



  

EOS space (2/3)
● Unix file operation with fuse:

● xrdcp:



  

EOS space (3/3)
● Please bear in mind

– Read only access is only available within TIDC facilities 
whether by xrdcp or unix file operation.

● You may also leverage scp or sftp via tidc-ui. e.g.:
 scp tidc-ui01.grid.sinica.edu.tw:/eos/<xxx>/<xx>/myfile.root  ~/   

– If you wanna access EOS outside TIDC facility or writable 
permission, you will need grid certificate and CMS VO.



  

Ceph space
● /ceph/work/<group>/ -- <group directory, 3TB free>
● It’s accessible by generic Unix file operation.



  

Typical data flow with job(1/2)

Jobs
EOS

Inputs

Outputs

Grid



  

Typical data flow with job (2/2)

tidc-ui01.grid.sinica.edu.tw

slurm-ui.twgrid.org

TIDC cpu pool

NSTC cpu pool



  

EOS data flow only

Jobs

EOS

Inputs

Outputs

● This work flow needs to define new EOS space outside Grid.
– Better not to write back to /eos/cms/store/user directly, because it 

would disturb CMS’s own accounting system.
● Those data will become dark data, and will be purged routinely.

● Defining a private EOS space for local usage is feasible, but 
needs to get consensus on:
– Capacity, Quota, ACL, ETC.



  

Example Job with data handling
#!/bin/bash
echo "Change to working directory: /ceph/work/<group name>"
cd /ceph/work/ASGC/felixlee/
pwd
echo "Za Warudo!"
sleep 9
echo "my argument: $@"

### EOS data access, path: /eos/cms
cp /eos/cms/store/data/Run2016B/MET/AOD/21Feb2020_ver2_UL2016_HIPM-
v1/230000/91574BBC-89FB-BC49-8DBB-40FCDA421256.root .
ls -l 91574BBC-89FB-BC49-8DBB-40FCDA421256.root
file 91574BBC-89FB-BC49-8DBB-40FCDA421256.root
 
### Ceph filesystem access, path: /ceph/work/<group name>
ls -l /ceph/work/ASGC/felixlee/91574BBC-89FB-BC49-8DBB-40FCDA421256.root

echo "job finished"



  

Wrap-up (access end-point)
● UI: 

– Condor + TIDC worker nodes
● tidc-ui[01~04].grid.sinica.edu.tw

– Slurm + NSTC worker nodes
● slurm-ui.twgrid.org

● Storage:
– TIDC EOS

● /eos/cms/store/
● root://tidc-smstor1.grid.sinica.edu.tw//eos/cms/store

– Ceph
● /ceph/work/<group name>



  

Wrap-up (Useful commands)
● condor_submit <job file>

– Submit condor job by job file
● condor_rm <job id>

– Delete condor job by id
● condor_q

– Query job status
● condor_q -analyze

– Briefly check why job doesn’t get running.
● condor_q  -better-analyze

– Check why job doesn’t get running with more information.
● xrdcp <EOS URL>

– Download data from EOS.



  

Tutorial files
● /ceph/sharedfs/software/tutorial/condor/

– Jobmission files:
● condor.jdl
● condor_queue_index2.jdl
● condor_queue_random.jdl

– Job script
● test.sh

● Copy them to your home, if you wanna play with it.
–  cp  /ceph/sharedfs/software/tutorial/condor/*  ~/ 
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