

HT-Condor tutorial for HEP users
(w/ TIDC facilities)

Felix Lee
NSTCCore & TIDC User Training Workshop

Computing resource
& accessible end point

● tidc-ui[01~04].grid.sinica.edu.tw (UI)
– tidc-ui[01,03] : CentOS7 worker nodes (to be decommissioned)

● tidc-ui02 is under maintenance...
– tidc-ui04: Alma9 worker nodes

● Will add tidc-ui05 in the future.
– ssh UI, Condor scheduler, job submitter.
– Accessible by ssh client with dicos account.

● tidc-arc6-1.grid.sinica.edu.tw (ARC CE)
– Under to migration to Condor-CE with Alma9 (ongoing)
– Grid CE.
– Accessible by CMS Crab3 with grid certificate
– There will be Condor-CE in the future: tidc-condor-cm.grid.sinica.edu.tw

Storage Access
● EOS:

– By xrootd:
● root://tidc-smstor1.grid.sinica.edu.tw/eos/

– By filesystem access. (fuse)
● /eos

● Shared filesystem
– /ceph/work/<group name>

Resources
● Condor cluster

– 768 cores(AMD EPYC 7713) : CentOS7
– 3072 cores (AMD EPYC 9654, Genoa): Alma9

● Another 1920 cores will be coming (AMD EPYC 9645, Turin)

● EOS storage
– 649.99 TB

● Ceph filesystem
– 3TB per group.

● Can be extended.

TIDC Condor cluster overview (cur)
tidc-ui01~03

sched

tidc-arc6-1
sched

tidc-arc6-1
Collector

Negotiator

Worker
node

Worker
node

Worker
nodeWorker

nodeWorker
nodeWorker

node

tidc-ui04
sched

tidc-condor-cm
sched

tidc-condor-cm
Collector

Negotiator

Worker
node

Worker
node

Worker
nodeWorker

nodeWorker
nodeWorker

node

CentOS 7

AlmaLinux 9

Condor scheduler
● The scheduler(submitter) is distributed

– Each schedd manages their own jobs.
● e.g. if tidc-ui01 crashes, all of your submitted and running

jobs from tidc-ui01 will:
– Be in held state, if the machine can be recovered.

● You can rerun it, but the job will restart from fresh unless you do
check-point by yourself.

– All gone, if the machine can’t be recovered.

– So, please use Condor UI wisely, please be gentle
with UI. :)

Condor scheduler

tidc-ui01
sched

tidc-arc6-1
sched

tidc-arc6-1
Collector

Negotiator

Worker
node

Worker
node

Worker
nodeWorker

nodeWorker
nodeWorker

node

All
submitted/running
job will be gone

My jobs are all fine

Your first job

Tutorial files
● /ceph/sharedfs/software/tutorial/condor/

– Jobmission files:
● condor.jdl
● condor_queue_index2.jdl
● condor_queue_random.jdl

– Job script
● test.sh

● Copy them to your home, if you wanna play with it.
– cp /ceph/sharedfs/software/tutorial/condor/* ~/

Preparing your condor job
● To submit a condor job, we need:

– 1. Condor submission file
● Handling files:

– job executable, job standard out & error, input, output, condor log.
● Defining job requirement:

– CPU, memory, disk space.

– 2. Job executable file. (binary code or script)
– 3. Input file (optional)
– 4. Output file (optional)

Job submission file (1/4)
● executable:

– Where your executable is.
● It can be binary or shell script
● Remember to set executable

permission:
– chmod +x <your job file>

● arguments:
– Your argument for executable.

● should_transfer_files:
– yes/no/IF_NEEDED
– Default: yes

executable = /ceph/work/ASGC/felixlee/test.sh
arguments = yes I do 1 2 3

output = outputfile.$(ClusterId).$(ProcId).out
error = errorfile.$(ClusterId).$(ProcId).out
log = myexe.$(ClusterId).$(ProcId).log

request_cpus = 1
request_memory = 1024
request_disk = 10240

#should_transfer_files = yes

queue

Job submission file (2/4)
● output:

– Job stdout file name
● error:

– Job stderr file name
● log:

– Condor job log file
name

executable = /ceph/work/ASGC/felixlee/test.sh
arguments = yes I do 1 2 3

output = outputfile.$(ClusterId).$(ProcId).out
error = errorfile.$(ClusterId).$(ProcId).out
log = myexe.$(ClusterId).$(ProcId).log

request_cpus = 1
request_memory = 1024
request_disk = 10240

#should_transfer_files = yes

queue

Job submission file (3/4)
● request_cpus:

– Asking how many cores
● request_memory:

– Asking memory in MB
● request_disk:

– Asking disk in KB

executable = /ceph/work/ASGC/felixlee/test.sh
arguments = yes I do 1 2 3

output = outputfile.$(ClusterId).$(ProcId).out
error = errorfile.$(ClusterId).$(ProcId).out
log = myexe.$(ClusterId).$(ProcId).log

request_cpus = 1
request_memory = 1024
request_disk = 10240

#should_transfer_files = yes

queue

Job submission file (4/4)
● queue [number]

– Put job into queue.
● If follows with numbers,

it means queuing # of
jobs.

– e.g. queue 10
● If no number is given,

by default it means
queuing one job.

executable = /ceph/work/ASGC/felixlee/test.sh
arguments = yes I do 1 2 3

output = outputfile.$(ClusterId).$(ProcId).out
error = errorfile.$(ClusterId).$(ProcId).out
log = myexe.$(ClusterId).$(ProcId).log

request_cpus = 1
request_memory = 1024
request_disk = 10240

#should_transfer_files = yes

queue

More on job submission file
executable = /ceph/work/ASGC/felixlee/test.sh
arguments = yes I do 1 2 3

output = outputfile.$(ClusterId).$(ProcId).out
error = errorfile.$(ClusterId).$(ProcId).out
log = myexe.$(ClusterId).$(ProcId).log

request_cpus = 1
request_memory = 1024
request_disk = 10240

#should_transfer_files = yes

queue

● Submission file supports
variables
– Useful embedded variables

● $(ClusterId), $(ProcId)
– You can also define your own

variables.
● MyIndex = “hello”

– Useful macros:
● $RANDOM_INTEGER(min, max[,

step])
● $INT(item-to-convert, format-

specifier)

Playing with multiple jobs (1/4)
executable = /ceph/work/ASGC/felixlee/test.sh

output = outputfile.$(ClusterId).$(ProcId).out
error = errorfile.$(ClusterId).$(ProcId).out
log = myexe.$(ClusterId).$(ProcId).log

MyIndex = $(ProcId) * 10
arguments = $INT(MyIndex, %04d)

queue 4

● Queue multiple jobs
with auto-generated
arguments.
– $INT() case.
– The arguments will be:

● 0000, 0001, 0002, 0003

Playing with multiple jobs (2/4)
executable = /ceph/work/ASGC/felixlee/test.sh

output = outputfile.$(ClusterId).$(ProcId).out
error = errorfile.$(ClusterId).$(ProcId).out
log = myexe.$(ClusterId).$(ProcId).log

arguments = $RANDOM_INTEGER(0, 100)

queue 4

● Queue multiple jobs
with auto-generated
arguments.
– $RANDOM_INTEGER(

) case.

Playing with multiple jobs (3/4)
executable = /ceph/work/ASGC/felixlee/test.sh

output = outputfile.$(ClusterId).$(ProcId).out
error = errorfile.$(ClusterId).$(ProcId).out
log = myexe.$(ClusterId).$(ProcId).log

input = file1
arguments = -a -b 26
queue

input = file2
arguments = -c -d 92
queue

● “queue” can be also
specified multiple
times with different
segments.

Playing with multiple jobs (4/4)
executable = /ceph/work/ASGC/felixlee/test.sh

output = outputfile.$(ClusterId).$(ProcId).out
error = errorfile.$(ClusterId).$(ProcId).out
log = myexe.$(ClusterId).$(ProcId).log

queue input, arguments from (
 file1, -a -b 26
 file2, -c -d 92
)

● “queue” can be also
tuple like:
– queue [variable] from (

 -a -b 26
 -c -d 92
)

Job flavours (1/2)
● Used to specify

walltime.
– To avoid resource

abuse.
● Usage:

– +JobFlavour = “keyword”
● If JobFlavour is missing,

system will use “default”

executable = /ceph/work/ASGC/felixlee/test.sh
arguments = yes I do 1 2 3

output = outputfile
error = errorfile
log = myexe.log

request_cpus = 256
request_memory = 1024
request_disk = 10240

#should_transfer_files = yes
+JobFlavour = "large"

queue

Job flavours (2/2)
● default

– Walltime = 1 day
– Cpu = 1

● short
– Walltime = 3 days

● large
– Walltime = 14 days

● devel
– Walltime = 1 hour

● long_serial
– Walltime = 14 days
– Cpu = 1

executable = /ceph/work/ASGC/felixlee/test.sh
arguments = yes I do 1 2 3

output = outputfile
error = errorfile
log = myexe.log

request_cpus = 256
request_memory = 1024
request_disk = 10240

#should_transfer_files = yes
+JobFlavour = "large"

queue

Submitting and monitoring job
● To submit job(s):

– condor_submit your_jdl_file

● Monitoring job(s):
– condor_q

Handling files with condor 101
● Unlike slurm, when condor job reaches worker node, it won’t land

at directory where you submitted job from.
– e.g. you run “condor_submit condor.jdl” from home directory, but condor

job will not get executed from your home.
● Instead, it will create another temporary working directory and run jobs from there.

– So, recommend to “cd” to global working directory in your script whenever
needed.

– Also, if you don’t make should_transfer_files, please put absolute path into
executable for your job script.

● Let condor handling output doesn’t always work somehow.
– So, strongly recommend to handle output by your scripts.

Manage your jobs

● condor_q

More on monitoring (1/5)

● condor_q

More on monitoring (2/5)

● condor_q -nobatch
– ST(job state): R(running), I(Idling), H(Holding),

C(Completed)

More on monitoring (3/5)

More on monitoring (4/5)
● condor_q

Summary of your
job status

More on monitoring (5/5)
● condor_q

Summary of all jobs
(Yours and other user’s)

● condor_q -global

Check jobs from all schedulers

Analyzing why job doesn’t get running
● condor_q -analyze [job id]

– Job id is the combination of ClusterId and ProcId.
● e.g. 150.0

– Where the “150” is ClusterId and “0” is ProcId.
– The ProcId is serial integer when “queue” multiple jobs.

● e.g. queue 4, we will get:
● 150.0, 150.1, 150.2, 150.3

– You can omit ProcId, it will query all jobs under the
same ClusterId.

Analyzing why job doesn’t get running
● condor_q -analyze [job id]

The case when job is simply
queuing.

Analyzing why job doesn’t get running
● condor_q -analyze [job id]

The case when job is rejected
by worker nodes.

Get more detailed job match analysis
● condor_q -better-analyze [job id]

Get more detailed job match analysis
● condor_q -better-analyze [job id]

The case when job is rejected
by worker nodes.

Get more detailed job match analysis
● condor_q -better-analyze [job id]

Detailed matching status

All of your job requirements and conditions

Get more detailed job match analysis
● condor_q -better-analyze [job id]

Check the “Slots Matched” column,
where the value is “0”

Get more detailed job match analysis
● condor_q -better-analyze [job id]

Check the “Slots Matched” column,
where the value is “0”

Asking too many CPUs...

More on condor_q
● condor_q -help

Delete your jobs
● condor_rm <your job id1> [<job id2> … <job idn>]

– Delete your job by job id, where the job id can be specified multiple times:
● condor_rm 11 12 10

– Be aware of that, if you specific job id without ProcId, it means to delete all
ProcId under the same ClusterId.

● e.g. condor_rm 11 means to delete 11.0, 11.1,…, 11.x
● And, condor_rm 11.0 means to delete only 11.0

● condor_rm -all
– It will delete all of your jobs, use it carefully…

● condor_rm -help
– More options on condor_rm

Other commands
● condor_release <job id>

– Used when job is in hold state.
– Usually, the jobs will be held by several reasons.

● Schedd machine gets rebooted.
● Worker encounters so problems.
● You hold it by yourself with condor_hold.

– The condor_release will get job restarted from fresh.
● condor_hold <job id>

– Suspend your job, it can be resumed by condor_release.

Data flow and data handling

EOS space (1/3)
● How to access EOS via local cluster?

– It can be accessed by xrootd tool with xrootd url (w/o Grid proxy, it’s Read-only)
● Xrootd url: root://tidc-smstor1.grid.sinica.edu.tw//<eos path>
● Xrdcp

– xrdcp <xrootd url> .
● C++ or python Root API

– std::unique_ptr<TFile> myFile(TFile::Open("root://tidc-smstor1.grid.sinica.edu.tw//eos/cms/store/user/
felixlee/file.root"));

– Or simply by generic Unix file operation. (fuse mount)
● ls /eos/cms/store/
● cp /eos/cms/store/user/felix/file.root .

● Current EOS directory structure:
– /eos/cms/store/data -- <CMS production data>
– /eos/cms/store/mc -- <CMS mc production data>
– /eos/cms/store/user -- <CMS user data>

EOS space (2/3)
● Unix file operation with fuse:

● xrdcp:

EOS space (3/3)
● Please bear in mind

– Read only access is only available within TIDC facilities
whether by xrdcp or unix file operation.

● You may also leverage scp or sftp via tidc-ui. e.g.:
 scp tidc-ui01.grid.sinica.edu.tw:/eos/<xxx>/<xx>/myfile.root ~/

– If you wanna access EOS outside TIDC facility or writable
permission, you will need grid certificate and CMS VO.

Ceph space
● /ceph/work/<group>/ -- <group directory, 3TB free>
● It’s accessible by generic Unix file operation.

Typical data flow with job(1/2)

Jobs
EOS

Inputs

Outputs

Grid

Typical data flow with job (2/2)

tidc-ui01.grid.sinica.edu.tw

slurm-ui.twgrid.org

TIDC cpu pool

NSTC cpu pool

EOS data flow only

Jobs

EOS

Inputs

Outputs

● This work flow needs to define new EOS space outside Grid.
– Better not to write back to /eos/cms/store/user directly, because it

would disturb CMS’s own accounting system.
● Those data will become dark data, and will be purged routinely.

● Defining a private EOS space for local usage is feasible, but
needs to get consensus on:
– Capacity, Quota, ACL, ETC.

Example Job with data handling
#!/bin/bash
echo "Change to working directory: /ceph/work/<group name>"
cd /ceph/work/ASGC/felixlee/
pwd
echo "Za Warudo!"
sleep 9
echo "my argument: $@"

EOS data access, path: /eos/cms
cp /eos/cms/store/data/Run2016B/MET/AOD/21Feb2020_ver2_UL2016_HIPM-
v1/230000/91574BBC-89FB-BC49-8DBB-40FCDA421256.root .
ls -l 91574BBC-89FB-BC49-8DBB-40FCDA421256.root
file 91574BBC-89FB-BC49-8DBB-40FCDA421256.root

Ceph filesystem access, path: /ceph/work/<group name>
ls -l /ceph/work/ASGC/felixlee/91574BBC-89FB-BC49-8DBB-40FCDA421256.root

echo "job finished"

Wrap-up (access end-point)
● UI:

– Condor + TIDC worker nodes
● tidc-ui[01~04].grid.sinica.edu.tw

– Slurm + NSTC worker nodes
● slurm-ui.twgrid.org

● Storage:
– TIDC EOS

● /eos/cms/store/
● root://tidc-smstor1.grid.sinica.edu.tw//eos/cms/store

– Ceph
● /ceph/work/<group name>

Wrap-up (Useful commands)
● condor_submit <job file>

– Submit condor job by job file
● condor_rm <job id>

– Delete condor job by id
● condor_q

– Query job status
● condor_q -analyze

– Briefly check why job doesn’t get running.
● condor_q -better-analyze

– Check why job doesn’t get running with more information.
● xrdcp <EOS URL>

– Download data from EOS.

Tutorial files
● /ceph/sharedfs/software/tutorial/condor/

– Jobmission files:
● condor.jdl
● condor_queue_index2.jdl
● condor_queue_random.jdl

– Job script
● test.sh

● Copy them to your home, if you wanna play with it.
– cp /ceph/sharedfs/software/tutorial/condor/* ~/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

