Michael Schuh, DESY. April 3 2019 ISGC, Taipei

[Infrastructure][Platform][Function]-as-a-Service@ DESY OpenStack Cloud

EOSCpilot The European Open Science Cloud for Research Pilot Project www.eoscpilot.eu

- European XFEL use case @ DESY
 - Femto-second X-ray Crystallography
- Scientific cloud computing
 - EOSC
 - Auto-scaling GitOps
- Function-as-a-Service
 - in Jupyter Notebooks
 - and event-driven automation with dCache

Outline


SECTION 1

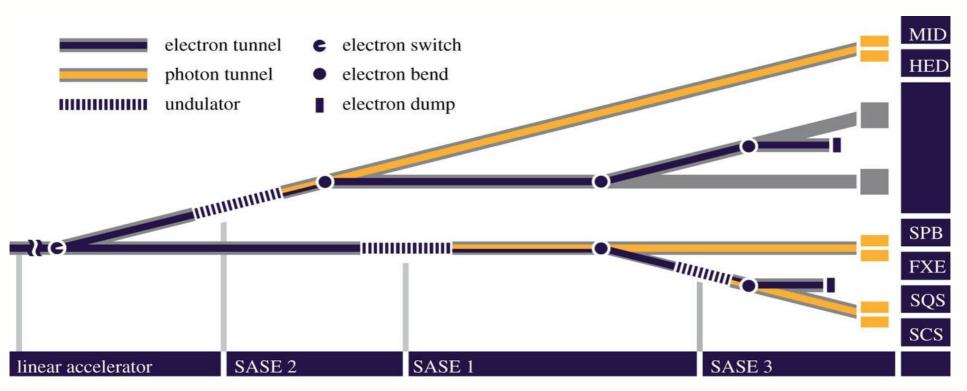
- EU-XFEL use case @ DESY
 - Femto-second X-ray Crystallography

DESY Deutsches **E**lektonen-**SY**nchrotron (German Electron-Synchrotron)

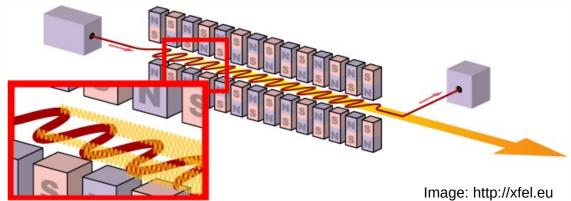
- Physics with Photons, Free Electron Lasers
- Accelerator technologies
- Experimental particle physics
- Astroparticle physics

Images: http://www.desy.de/femto_eng/index_eng.html

- Scientific Computing, HPC, HTC, Grid and Cloud
- LHC Tier-2 center, large scale storage and archiving
- dCache a peta scale storage platform
- Computing and storage provider for European XFEL

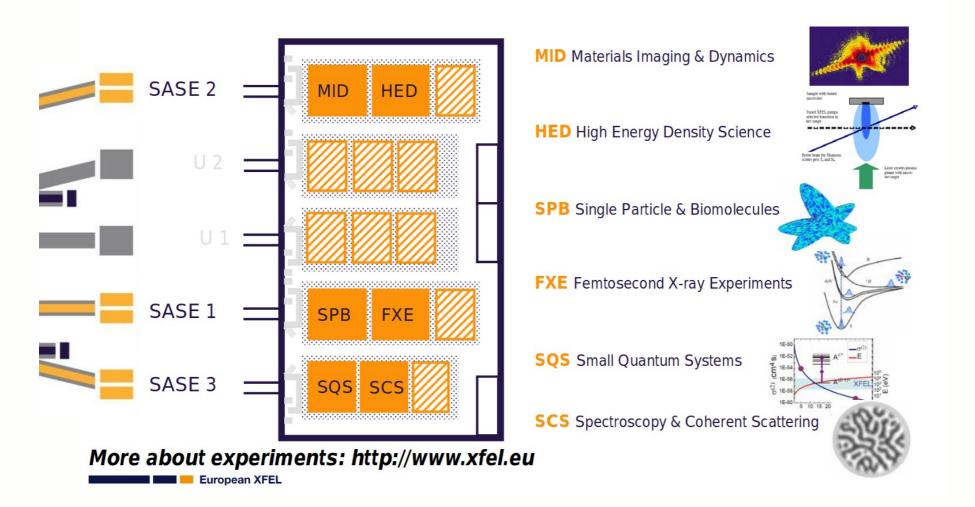


www.eoscpilot.eu


section 1 EU-XFEL – use case @ DESY

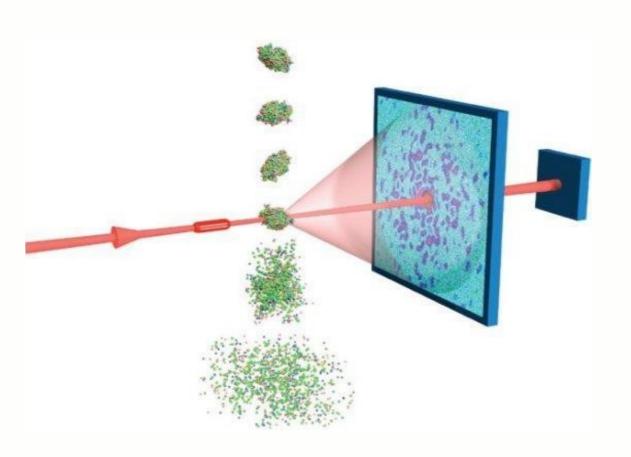
European XFEL

Self-Amplified Spontaneous Emission


Most brilliant light source ever built Extremely short laser pulses

section 1 EU-XFEL – use case @ DESY

Experiments at the European XFEL



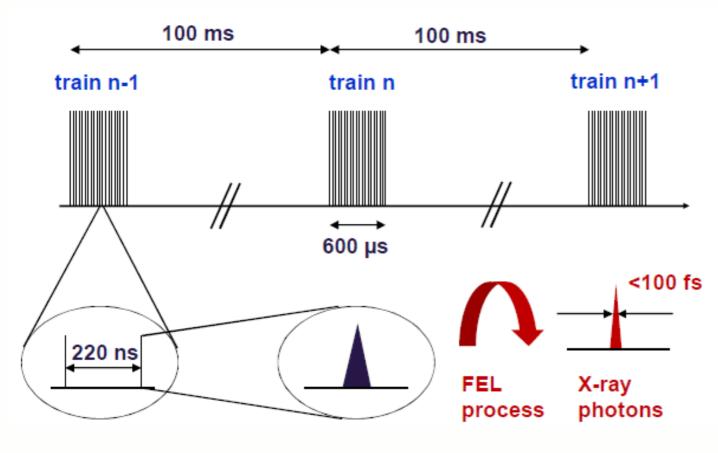
Experiments in physics, chemistry, materials science, biology, nanotechnology

Source: http://xfel.eu

Exposure time: femto-seconds (10⁻¹⁵ s)

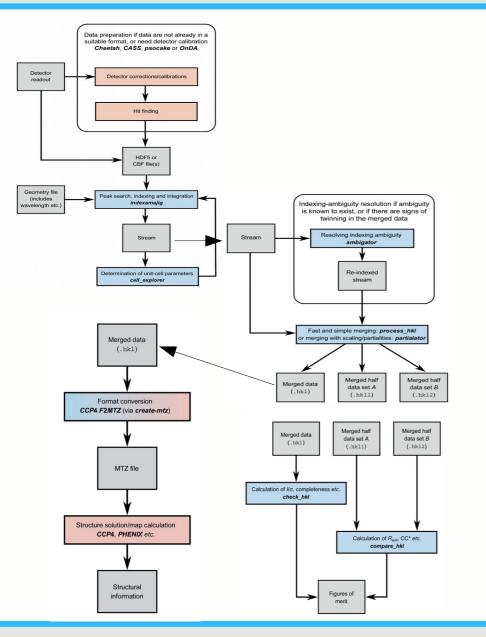
- Molecular 3D imaging at the atomic scale
- Diffraction before destruction
- Unprecedented resolution in both: time and space
- Dynamics of inner structures (not just surface) of biological objects
 - Virus
 - Cell nucleus

- ...


• To reconstruct a 3D image, a large amount of random oriented single images have to be combined

source: https://cid.cfel.de/research/femtosecond_crystallography/

Data rates for the FXE instrument


Beam time per experiment: several hours

Readout in bunch structure:

- 10 Hz train rate
- 4.5 MHz puls rate
- 2700 pulses per train
- 1 Mpxl detectors:
 - 2MB/pulse
 - 1GB/train
 - 10GB/second
- 4 Mpxl detectors:
 - 8MB/pulse
 - 3GB/train
 - 30GB/second

Image: http://xfel.eu

Data processing with the CrystFEL framework

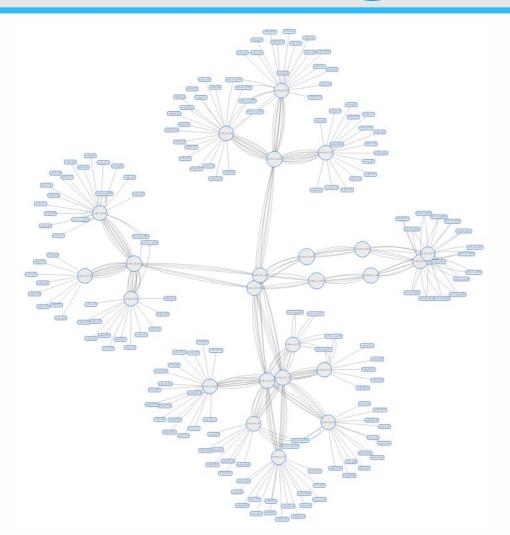
Processing serial crystallography data with **CrystFEL**: a step-by-step guide

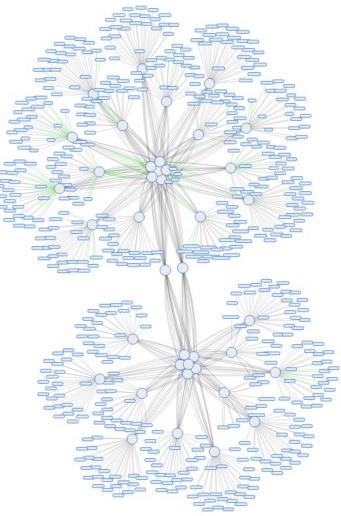
http://journals.iucr.org/d/issues/2019/02/00/ba5291/index.html https://www.desy.de/~twhite/crystfel

Microservices:

"CrystFEL is a suite of software comprising 15 core programs: [...] CrystFEL is primarily a command-line-driven piece of software, with some exceptions [...]."

Reproducibility challenge:


"In addition to the core programs, the CrystFEL package contains a repository of scripts which are intended to be copied to the working directory and customised to suit the individual situation."


Image: http://journals.iucr.org/d/issues/2019/02/00/ba5291/index.html

section 1 EU-XFEL – use case @ DESY

Compute infrastructure, Infiniband fabrics

Online / Offline Compute Clusters ~28,000 CPUs, 130 GPUs, ~250 TB RAM Infiniband fabrics

Interactive HPC with Jupyter Notebooks

Maxwell Jupyter Job Options

Maxwell partitions	shared node on Jupyter partition	
Choice of GPU	none ~	
Note: For partitions	without GPUs (or choice of GPUs) the GPU selection will be set to 'r	none'

Job duration

8 hours ~

Note: on the shared Jupyter partition (jhub) the time limit is always 7 days!

	Current Status							
Partition	# nodes	# avail	# GPUs avail	# P100 avail	# V100 avail			
jhub	11	11	0	0	0			
maxwell	61	8	0	0	0			
maxgpu	19	16	16	5	9			
all	327	143	0	0	0			
allgpu	88	35	35	21	9			
upex	183	117	14	14	0			

Spawn

Interactive HPC with Jupyter Notebooks

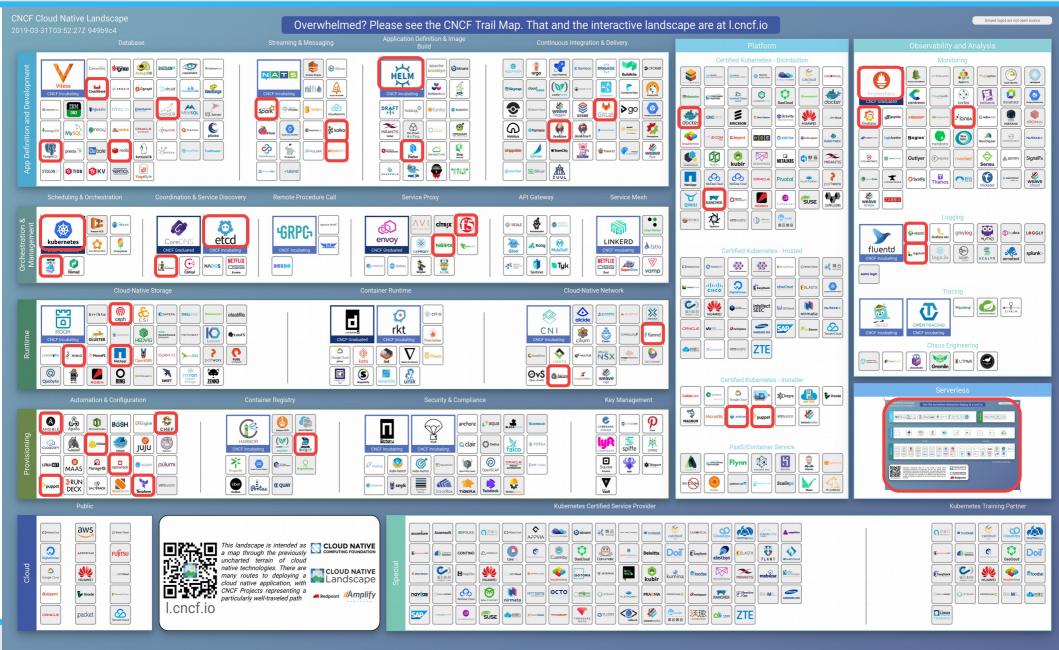
In [12]:	lscpu grep CPU head -n 3										
	CPU op-mode(s CPU(s): On-line CPU(s		32-bit, 64-bit 80 0-79								
In [13]:	free -h										
	Mem: Swap:	total 503G 4.0G	used 39G 109M	free 389G 3.9G	shared 106M	buff/cache 75G	available 462G				
In [14]:	grep -q ^flag	s.*∖ hyp	ervisor /proc/cpu	uinfo &&	echo "VM:	yes" echo	"VM: no"				
	VM: no										
In [32]:			URM_JOBID grep URM_JOBID grep								
			31T13:48:49 EndTi ,billing=80	ime=2019-	03-31T14:4	8:49 Deadline	e=N/A				

- Interactive session on HPC cluster
- Billing: 80 CPUs
- Job will terminate after 1 hour

SECTION 2

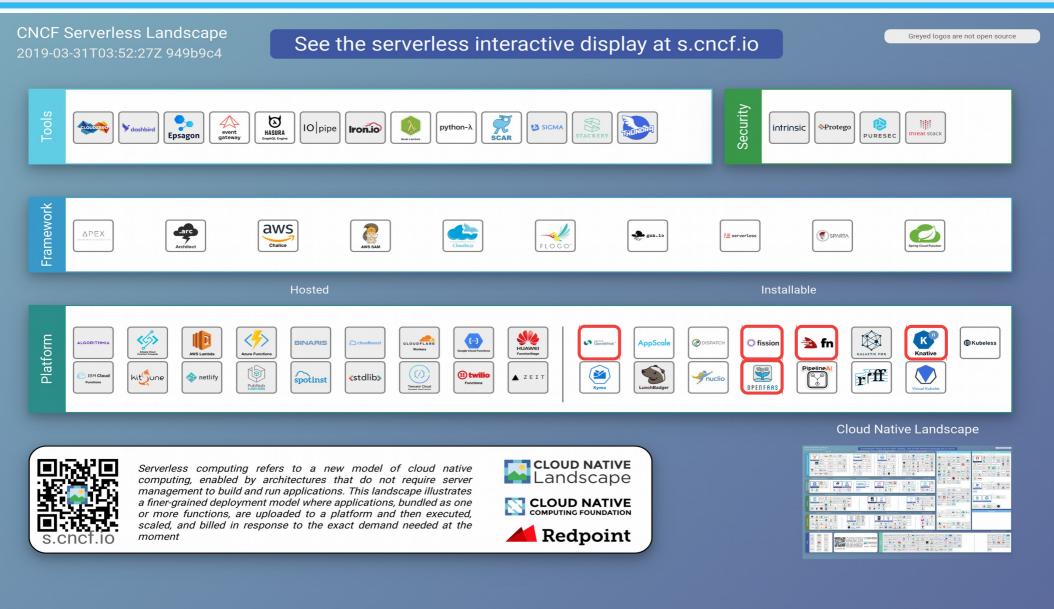
- Scientific cloud computing
 - European Open Science Cloud
 - Auto-scaling GitOps

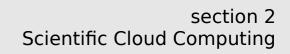
European Open Science Cloud (EOSC) implementation phase 2018-2020 from Minimum Viable Research Data Ecosystem to the main Rules of Participation and the implementation of the FAIR data principles


https://ec.europa.eu/info/publications/prompting-eosc-practice_en https://ec.europa.eu/info/publications/turning-fair-reality_en https://www.eosc-portal.eu/

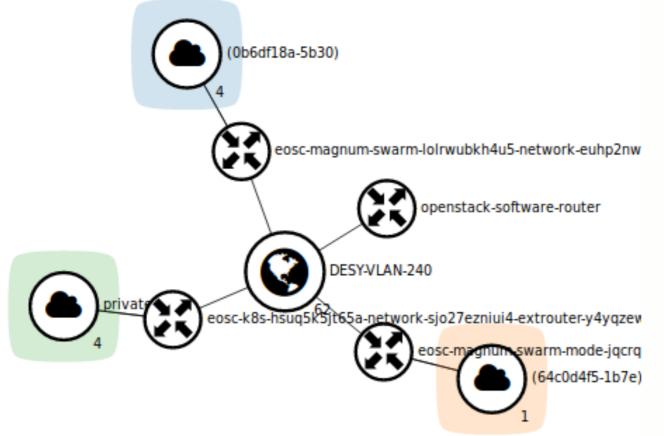
2018

section 2 Scientific Cloud Computing

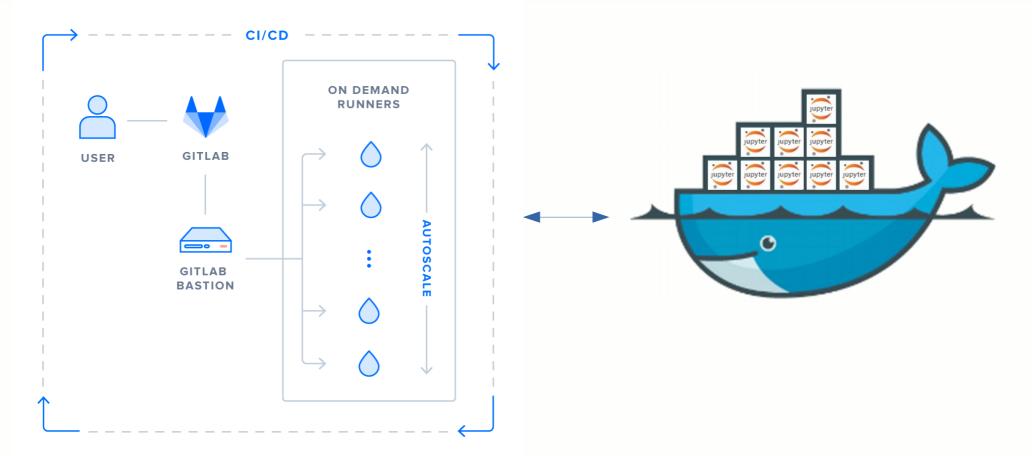

CNCF Cloud Native Landscape



section 2 Scientific Cloud Computing


CNCF Serverless Landscape

Virtualized compute infrastructure



- Vms on OpenStack
- Software defined networking
- Kubernetes Clusters in private networks
- High level of isolation
- Multi-tenancy
- Scalability
- Rapid service deployments
- Here: OpenStack Magnum
- Also: rke, kubespray, ...

section 2 Scientific Cloud Computing

CI/CD for user defined software stacks

- HEAT templates for OpenStack deployment
- Creates and destroys VMs with Docker-Machine using OpenStack driver
- Users define their environments for build and tests as docker containers

Image CI/CD: https://about.gitlab.com/2018/06/19/autoscale-continuous-deployment-gitlab-runner-digital-ocean/

section 2 Scientific Cloud Computing User environments in Jupyter Hub

Add require	ments.tx	‹t				(1) pan > eosc-pan-wsk-on-jhub > Container Registry					
④ 4 jobs from mas	ter in 6 minute	es and 59 seconds (qu	ueued for 3 seconds))		Container Re	egistry				
P latest						With the Docker Co Learn more about C	ntainer Registry integrated ir Container Registry.	۱to GitLab, every project	can have its own s	pace to store its Do	ocker images.
- o - 3d73cf79 •••	G					∧ pan/eosc-pan-	wsk-on-jhub 🕜				
Pipeline Jobs 4						Tag	т	ag ID	Siz	e	Created
Build		Test		Release ——		latest 🕜	a	1557b47c	1.5	55 GiB	1 week ago
⊙ build	0	⊘ test	0		0	master 😘	а	1557b47c	1.5	55 GiB	1 week ago

Add requirements.txt

Q 4 jobs from master in 6 minutes and 59 seconds (queued for 3 seconds)
□ latest
→ 3d73cf79 ···· Co
Pipeline Jobs 4
Build Test Release
O build O co test O co release

pan > eosc-pan-wsk-on-jhub > Container Registry

Container Registry

0

With the Docker Container Registry integrated into GitLab, every project can have its own space to store its Docker images.

Learn more about Container Registry.

∧ pan/eosc-pan-wsk-on-jhub 🕚

Tag	Tag ID	Size	Create			
latest 💪	a1557b47c	1.55 GiB	1 week			
master 💪	a1557b47c	1.55 GiB	1 week			
	Spawner Option	6				
		15				
0	EOSC PaN FaaS image Image with OpenWhisk client for function-as-a-service, based on t pan-git.desy.de:5555/pan/eosc-pan-wsk-on-jhub	the scientific python notebook: eosc-				
0	Scientific Python environment Default image with scipy and other utils					
0	Extended Datascience environment Additional packages for Python, R, and Julia.					
0	Spark environment The Jupyter Stacks spark image!					

www.eoscpilot.eu

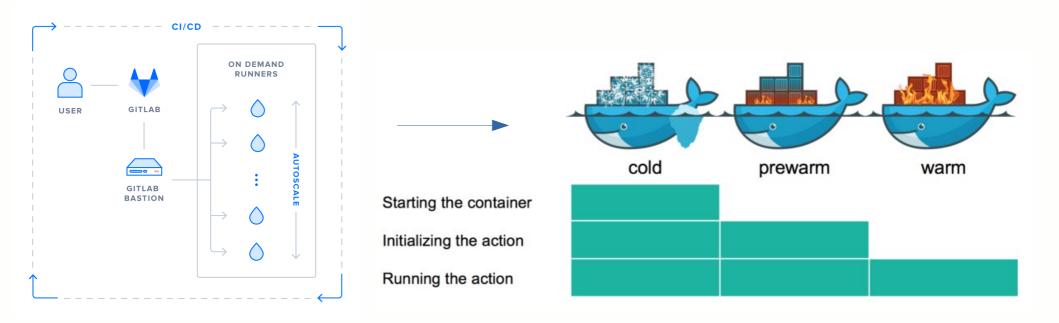
Jupyter Notebooks in EOSC

https://eosc-pan-jhub.desy.de

	CPU(s):	le(s): PU(s) list:	32-bit, 64-bit 8 0-7	:					
In [2]:	1 free	•h							
	Mem: Swap:	total 15G 0B	used 4.2G 0B	free 457M 0B	shared 409M	buff/cache 10G	available 100		
In [3]:	1 grep ·	q ^flags.*	∖ hypervisor /µ	oroc/cpuinfo	0 && echo "	'VM: yes"	echo "VM:	no"	

https://training.notebooks.egi.eu

[3]:	! lscpu	grep CPU	head -n 3				
	CPU(s):	ode(s): CPU(s) list:	32-bit, 64-b: 8 0-7	it			
[4]:	! free -	ı					
		total	used	free	shared	buff/cache	available
	Mem: Swap:	31G 0B	1.7G 0B	17G 0B	17M	11G	29G
[6]:	! grep -o	q ^flags.*\	hypervisor /p	roc/cpuinfo 🍇	& echo "VM	: yes" ech	no "VM: no"
	VM: yes						



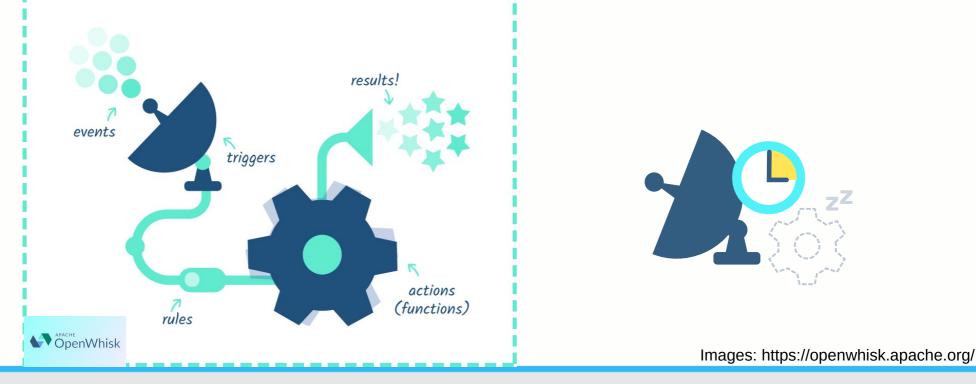
SECTION 3

- Function-as-a-Service
 - ... in Jupyter Notebooks
 - and event-driven automation with dCache

Container as a function

Cloud functions: No infrastructure management by the user Efficient scaling per-function, rapid provisioning


Number of services >> 1 Number of requests of a service = arbitrary function of time


https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0

Event driven computation

- Execute code in response to events
 - incoming data in dCache
 - Data restaged from tape
 - new messages in dedicated queues
 - Produce derived data
 - Extract metadata
 - Manage data locality

www.eoscpilot.eu

Portability	Cloud Orchestration templates, dockerized processes
Accessibility	Federated AAI, OIDC
Interoperability	Standard interfaces REST, JSON
User-friendlyness	Server-hidden Industry leading projects: GitLab, Jupyter Notebooks
Reproducibility	Everything in version control and CI/CD hashsums/pids for data, infrastructure-as-code and also for deployed functions and publications
Scalability	Auto-scaling Vms and Containers on OpenStack + Kubernetes

Thank you for your attention!

<u>Thanks to dCache people:</u> Tigran Mkrtchyan, DESY Paul Millar, DESY

Open Source Software: OpenStack Kubernetes Docker dCache Kafka Project Jupyter GitLab OpenWhisk Python Linux

. . .

