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Background: NorduGrid Model
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Background: 
ATLAS Panda “Pilot Factory” Model
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● ATLAS Pilot Factory: A special Pilot job 
coordinates the work on a worker 
node, e.g. pulls subjobs from PANDA

● Each pulled job downloads data to 
work on, or works on data already 
staged.

Issues with NG model:
A. The resource requirements for each 

single job is NOT known at submission 
time

B. data requirements NOT known at 
submission time => load of huge 
datasets



History
● NorduGrid model was built on philosophy of ARC-CE and distributed storage

○ No local storage - data staging on WN is too inefficient
○ No middleware or network connectivity on WN
○ Everything grid-related was delegated to ARC-CE

● The pilot model implemented in Panda for ATLAS did not fit easily
○ An intermediate service was needed to fake the pilot and submit to ARC behind the scenes
○ ~2008 ARC Control Tower (aCT) was written (by Andrej Filipcic) and ran in Ljubljana
○ 2013-14 aCT2 was written and the service moved to CERN

■ Multi-process instead of multi-thread, MySQL instead of sqlite
○ 2015-17 Many sites moved from CREAM CE to ARC CE

■ Creation of truepilot mode
○ 2017: Condor support added for submission to HTCondor CE, CREAM, ...
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Differences between aCT and pilot factory

● Pilot factories submit a generic wrapper with 
fixed batch system requirements, which 
then pulls a real job

● aCT pulls the job from Panda, then submits 
to the CE with the exact requirements of 
that job

○ Including no of cores, memory, walltime, 
priority

○ Useful if a wide range of workloads run on 
the same batch system

● What about late-binding?
○ If the CE and batch system properly 

propagate the priority set in the job 
description, the highest priority jobs will 
always run first
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NorduGrid mode
● aCT has to emulate certain parts of the pilot

○ Get new jobs, send heartbeats

● Post-processing
○ Once job finishes, it leaves its log and some meta-information for aCT to download through the CE
○ Log is copied to web area for access via monitoring pages
○ Output files are validated (check size and checksum on storage vs pilot meta-info)
○ Job meta-info is sent to panda along with final heartbeat

● If job fails badly (pilot crash or batch system kill) and no pilot info is available
○ aCT sends what it can to Panda
○ Error info and timings from the CE
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True pilot mode
● For sites running ARC CE who do not 

need the full “native” mode with staging 
etc

● aCT fetches the payload and submits it to 
the ARC-CE

● ARC-CE submits the batch job with 
predefined payload and requirements

● Pilot on the worker node does the same 
as on the conventional pilot sites including 
downloading of data, but skips the 
fetching of payload from PanDA

● aCT sends heartbeats to Panda up until 
job is running, then leaves it to pilot
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General Architecture

Overview in this doc (see references) 8

ATLAS-specific

https://docs.google.com/document/d/15UvlpDTkLeYK38ornc27zGDI7Dg369hoYY1XIA2x0dk/edit?usp=sharing


aCT Daemons
ATLAS Daemons:

● aCTPandaGetJob: Queries panda for activated jobs and if there are any, gets jobs
● aCTAutopilot: Sends heartbeats every 30 mins for each job and final heartbeats
● aCTAGISFetcher: Downloads panda queue info from AGIS every 10 minutes. This info is used to know which queues to serve and 

the CE endpoints.

ARC Daemons (use python ARC client library):
● aCTSubmitter: Submits jobs to ARC CE
● aCTStatus: Queries status of jobs on ARC CE
● aCTFetcher: Downloads output of finished jobs from ARC CE (pilot log file to put on web area, pickle/metadata files used in final 

heartbeat report to panda)
● aCTCleaner: Cleans finished jobs on ARC CE
● aCTProxy: Periodically generates a new VOMS proxy with 96h lifetime

Internal Daemons:
● aCTPanda2Arc: Converts panda job descriptions to ARC job descriptions and configures ARC job parameters from AGIS queue 

and panda job info
● aCTValidator: Validates finished jobs (checksum of output files on storage etc) and processes pilot info for final heartbeat report
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Service setup and configuration
● 2 prod machines and 2 dev machines at CERN
● MySQL DBonDemand as DB
● Code and dependencies installed via pip and virtualenv
● Configuration is via 2 xml files, one for ARC and one for ATLAS
● Service is started by “actmain start”
● One prod machine runs almost all jobs
● One prod machine is warm spare running one job per queue

○ <maxjobs>1</maxjobs> can be changed if main machine goes down
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Current status
● Average 200k jobs per 

day from one machine
● Peaks up to 300k/day
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ATLAS sites served
● T1: FZK, NDGF (4 sites), RAL, TAIWAN, TRIUMF
● T2: Australia-ATLAS, BERN, CA-SFU, CA-WATERLOO, CSCS, DESY-HH, LRZ,  

LUNARC, MPPMU, SiGNET, TOKYO, WUPPERTAL
● T3: ARNES, SiGNET-NSC
● HPC: CSCS (PizDaint), LRZ (SuperMUC), IN2P3-CC (IDRIS, in testing), MPPMU 

(Draco + Hydra), DESY-HH (Maxwell), Prague (IT4I)
● Others: BOINC
● Full list at https://aipanda404.cern.ch/data/aCTReport.html

NorduGrid
Truepilot
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https://aipanda404.cern.ch/data/aCTReport.html


Unified queues
● Traditional pull-mode requires defining a 

“queue” for each type of pilot submitted, eg
○ Analysis single-core with low memory
○ Analysis single-core with high memory
○ Production multi-core with high memory 

and short walltime
○ etc.

● In push-mode only a single queue is required 
because the job requirements are dynamically 
set

○ However in ATLAS we still need 
separate queues for production and 
analysis because the credentials are 
different

● FZK went from 7 to 3 (now 2) queues
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Condor submission
● Submission to Condor-G was 

implemented in 2017
● Separate DB table for condor 

jobs
● Submitter/Status/Fetcher/Cleaner 

for Condor using Condor python 
bindings

● Panda2Condor to convert 
pandajob to ClassAd

● Requires running local schedd 
with out of the box config

● Truepilot only
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Condor submission
● Example classad
● “GridResource” is added at the time the submitter picks the job for a specific CE
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{'Arguments': '-h IN2P3-LAPP-TEST -s IN2P3-LAPP-TEST -f false -p 25443 -w https://pandaserver.cern.ch',
 'Cmd': 'runpilot3-wrapper.sh',
 'Environment': 
'PANDA_JSID=aCT-atlact1-2;GTAG=http://pcoslo5.cern.ch/jobs/IN2P3-LAPP-TEST/2017-11-07/$(Cluster).$(Process).out;APFCID=$(
Cluster).$(Process);APFFID=aCT-atlact1-2;APFMON=http://apfmon.lancs.ac.uk/api;FACTORYQUEUE=IN2P3-LAPP-TEST',
 'Error': '/var/www/html/jobs/IN2P3-LAPP-TEST/2017-11-07/$(Cluster).$(Process).err',
 'JobPrio': '100', ←-- taken from job description
 'MaxRuntime': '172800', ←-- taken from job description
 'Output': '/var/www/html/jobs/IN2P3-LAPP-TEST/2017-11-07/$(Cluster).$(Process).out',
 'RequestCpus': '1', ←-- taken from job description
 'RequestMemory': '2000', ←-- taken from job description
 'TransferInputFiles': '/home/dcameron/dev/aCT/tmp/inputfiles/3697087936/pandaJobData.out', ←-- (real) job description
 'Universe': '9',
 'UserLog': '/var/www/html/jobs/IN2P3-LAPP-TEST/2017-11-07/$(Cluster).$(Process).log',
 'X509UserProxy': '/home/dcameron/dev/aCT/proxies/proxiesid5'}



REST Interface 
and
user-friendly CLI

● Support for a REST interface and CLI 
tools to submit to aCT has been 
added

○ MSc. “User Interfaces for 
arcControlTower” by J. Merljak

● Allows aCT to be used as generic job 
management system without the 
application-specific part
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Summary
● aCT is a stable mature product handling a large fraction of ATLAS workload
● The split between application and infrastructure allows easy extension to  

support new instances of either
● Code: https://github.com/ATLASControlTower/aCT
● Future plans:

○ Python 3 support
○ Re-design of database layer to support different database implementations
○ Move REST interface into production
○ Improve packaging and configuration to allow lightweight setups
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https://github.com/ATLASControlTower/aCT


References
● ARC Control Tower architecture:

https://docs.google.com/document/d/15UvlpDTkLeYK38ornc27zGDI7Dg369ho
YY1XIA2x0dk
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