
aCT: an introduction
Slides courtesy of David Cameron, Oslo University

Addenda by Florido Paganelli, Lund University
ISGC 2019, Academia Sinica in Taipei,

 Taiwan 31 March - 5 April 2019
1

Background: NorduGrid Model

2

ARC-CE

ARC-CE

GRID
Storage

Network
Storage

cluster
Storage

cluster
Storage

Job
Specification
Incl data
sources and
destinations

ARC data staging

ARC data staging

ARC data staging and caching

ARC data staging and caching

This is done before submitting to the batch
system and after the job has finished.
Resource allocation is not affected.

Transparent data staging for
distributed computing

submit

submit

Background:
ATLAS Panda “Pilot Factory” Model

3

● ATLAS Pilot Factory: A special Pilot job
coordinates the work on a worker
node, e.g. pulls subjobs from PANDA

● Each pulled job downloads data to
work on, or works on data already
staged.

Issues with NG model:
A. The resource requirements for each

single job is NOT known at submission
time

B. data requirements NOT known at
submission time => load of huge
datasets

History
● NorduGrid model was built on philosophy of ARC-CE and distributed storage

○ No local storage - data staging on WN is too inefficient
○ No middleware or network connectivity on WN
○ Everything grid-related was delegated to ARC-CE

● The pilot model implemented in Panda for ATLAS did not fit easily
○ An intermediate service was needed to fake the pilot and submit to ARC behind the scenes
○ ~2008 ARC Control Tower (aCT) was written (by Andrej Filipcic) and ran in Ljubljana
○ 2013-14 aCT2 was written and the service moved to CERN

■ Multi-process instead of multi-thread, MySQL instead of sqlite
○ 2015-17 Many sites moved from CREAM CE to ARC CE

■ Creation of truepilot mode
○ 2017: Condor support added for submission to HTCondor CE, CREAM, ...

4

Differences between aCT and pilot factory

● Pilot factories submit a generic wrapper with
fixed batch system requirements, which
then pulls a real job

● aCT pulls the job from Panda, then submits
to the CE with the exact requirements of
that job

○ Including no of cores, memory, walltime,
priority

○ Useful if a wide range of workloads run on
the same batch system

● What about late-binding?
○ If the CE and batch system properly

propagate the priority set in the job
description, the highest priority jobs will
always run first

5

NorduGrid mode
● aCT has to emulate certain parts of the pilot

○ Get new jobs, send heartbeats

● Post-processing
○ Once job finishes, it leaves its log and some meta-information for aCT to download through the CE
○ Log is copied to web area for access via monitoring pages
○ Output files are validated (check size and checksum on storage vs pilot meta-info)
○ Job meta-info is sent to panda along with final heartbeat

● If job fails badly (pilot crash or batch system kill) and no pilot info is available
○ aCT sends what it can to Panda
○ Error info and timings from the CE

6

True pilot mode
● For sites running ARC CE who do not

need the full “native” mode with staging
etc

● aCT fetches the payload and submits it to
the ARC-CE

● ARC-CE submits the batch job with
predefined payload and requirements

● Pilot on the worker node does the same
as on the conventional pilot sites including
downloading of data, but skips the
fetching of payload from PanDA

● aCT sends heartbeats to Panda up until
job is running, then leaves it to pilot

7

General Architecture

Overview in this doc (see references) 8

ATLAS-specific

https://docs.google.com/document/d/15UvlpDTkLeYK38ornc27zGDI7Dg369hoYY1XIA2x0dk/edit?usp=sharing

aCT Daemons
ATLAS Daemons:

● aCTPandaGetJob: Queries panda for activated jobs and if there are any, gets jobs
● aCTAutopilot: Sends heartbeats every 30 mins for each job and final heartbeats
● aCTAGISFetcher: Downloads panda queue info from AGIS every 10 minutes. This info is used to know which queues to serve and

the CE endpoints.

ARC Daemons (use python ARC client library):
● aCTSubmitter: Submits jobs to ARC CE
● aCTStatus: Queries status of jobs on ARC CE
● aCTFetcher: Downloads output of finished jobs from ARC CE (pilot log file to put on web area, pickle/metadata files used in final

heartbeat report to panda)
● aCTCleaner: Cleans finished jobs on ARC CE
● aCTProxy: Periodically generates a new VOMS proxy with 96h lifetime

Internal Daemons:
● aCTPanda2Arc: Converts panda job descriptions to ARC job descriptions and configures ARC job parameters from AGIS queue

and panda job info
● aCTValidator: Validates finished jobs (checksum of output files on storage etc) and processes pilot info for final heartbeat report

9

Service setup and configuration
● 2 prod machines and 2 dev machines at CERN
● MySQL DBonDemand as DB
● Code and dependencies installed via pip and virtualenv
● Configuration is via 2 xml files, one for ARC and one for ATLAS
● Service is started by “actmain start”
● One prod machine runs almost all jobs
● One prod machine is warm spare running one job per queue

○ <maxjobs>1</maxjobs> can be changed if main machine goes down

10

Current status
● Average 200k jobs per

day from one machine
● Peaks up to 300k/day

11

ATLAS sites served
● T1: FZK, NDGF (4 sites), RAL, TAIWAN, TRIUMF
● T2: Australia-ATLAS, BERN, CA-SFU, CA-WATERLOO, CSCS, DESY-HH, LRZ,

LUNARC, MPPMU, SiGNET, TOKYO, WUPPERTAL
● T3: ARNES, SiGNET-NSC
● HPC: CSCS (PizDaint), LRZ (SuperMUC), IN2P3-CC (IDRIS, in testing), MPPMU

(Draco + Hydra), DESY-HH (Maxwell), Prague (IT4I)
● Others: BOINC
● Full list at https://aipanda404.cern.ch/data/aCTReport.html

NorduGrid
Truepilot

12

https://aipanda404.cern.ch/data/aCTReport.html

Unified queues
● Traditional pull-mode requires defining a

“queue” for each type of pilot submitted, eg
○ Analysis single-core with low memory
○ Analysis single-core with high memory
○ Production multi-core with high memory

and short walltime
○ etc.

● In push-mode only a single queue is required
because the job requirements are dynamically
set

○ However in ATLAS we still need
separate queues for production and
analysis because the credentials are
different

● FZK went from 7 to 3 (now 2) queues

13

Condor submission
● Submission to Condor-G was

implemented in 2017
● Separate DB table for condor

jobs
● Submitter/Status/Fetcher/Cleaner

for Condor using Condor python
bindings

● Panda2Condor to convert
pandajob to ClassAd

● Requires running local schedd
with out of the box config

● Truepilot only

14

Condor submission
● Example classad
● “GridResource” is added at the time the submitter picks the job for a specific CE

15

{'Arguments': '-h IN2P3-LAPP-TEST -s IN2P3-LAPP-TEST -f false -p 25443 -w https://pandaserver.cern.ch',
 'Cmd': 'runpilot3-wrapper.sh',
 'Environment':
'PANDA_JSID=aCT-atlact1-2;GTAG=http://pcoslo5.cern.ch/jobs/IN2P3-LAPP-TEST/2017-11-07/$(Cluster).$(Process).out;APFCID=$(
Cluster).$(Process);APFFID=aCT-atlact1-2;APFMON=http://apfmon.lancs.ac.uk/api;FACTORYQUEUE=IN2P3-LAPP-TEST',
 'Error': '/var/www/html/jobs/IN2P3-LAPP-TEST/2017-11-07/$(Cluster).$(Process).err',
 'JobPrio': '100', ←-- taken from job description
 'MaxRuntime': '172800', ←-- taken from job description
 'Output': '/var/www/html/jobs/IN2P3-LAPP-TEST/2017-11-07/$(Cluster).$(Process).out',
 'RequestCpus': '1', ←-- taken from job description
 'RequestMemory': '2000', ←-- taken from job description
 'TransferInputFiles': '/home/dcameron/dev/aCT/tmp/inputfiles/3697087936/pandaJobData.out', ←-- (real) job description
 'Universe': '9',
 'UserLog': '/var/www/html/jobs/IN2P3-LAPP-TEST/2017-11-07/$(Cluster).$(Process).log',
 'X509UserProxy': '/home/dcameron/dev/aCT/proxies/proxiesid5'}

REST Interface
and
user-friendly CLI

● Support for a REST interface and CLI
tools to submit to aCT has been
added

○ MSc. “User Interfaces for
arcControlTower” by J. Merljak

● Allows aCT to be used as generic job
management system without the
application-specific part

16

Summary
● aCT is a stable mature product handling a large fraction of ATLAS workload
● The split between application and infrastructure allows easy extension to

support new instances of either
● Code: https://github.com/ATLASControlTower/aCT
● Future plans:

○ Python 3 support
○ Re-design of database layer to support different database implementations
○ Move REST interface into production
○ Improve packaging and configuration to allow lightweight setups

17

https://github.com/ATLASControlTower/aCT

References
● ARC Control Tower architecture:

https://docs.google.com/document/d/15UvlpDTkLeYK38ornc27zGDI7Dg369ho
YY1XIA2x0dk

18

https://docs.google.com/document/d/15UvlpDTkLeYK38ornc27zGDI7Dg369hoYY1XIA2x0dk
https://docs.google.com/document/d/15UvlpDTkLeYK38ornc27zGDI7Dg369hoYY1XIA2x0dk

