Big Data and A General Theory of Concept Lattice

Tsong-Ming LIAW, Simon C. LIN Institute of Physics Academia Sinica ISGC, 4 April 2019

Common Problem in Big Data

 Given a Formal Context at scale, how to find the categorization, membership prediction and all logic implications?

The Formal Context F(G,M)

M G	a	b	С	d	e
1	Х		Х	Х	Х
2	Х		Х		
3		Х			Х
4		Х			Х
5	Х				
6	Х	Х			Х

Looking for General Theory

- In the Big Data Analytics, it was recognized that prediction and description are two generic goals
- Prediction often appears with the use of attributes to predict the membership of a particular object in some object set with similar attributes.
- Description looks for the attributes that describes the object, often it involves identifying a set of attributes that are shared by all objects in the set.
- Is there a general theory to achieve these goals?
- Formal Concept Analysis: Classify object classes according to the common property
- Rough Set Lattice: Discern an object class via its property others don't have

Formal Context

 $A \begin{cases} binary relation \\ map from element to set \end{cases} \underline{R} defined for$ Objects $G = \{1, 2, 3, 4, 5, 6\}$ and Attributes $M = \{a, b, c, d, e\}$: $\forall g \in G \forall m \in M \ gRm \equiv mRg \ \left(m \in g^R \subseteq M \ \text{or} \ g \in m^R \subseteq G \right),$ the object 1 possesses the attributes $\{a, c, d, e\}$ 1Ra 1Rc 1Rd 1Re $1^{R} = \{a, c, d, e\}$ (an attribute set) the attribute *a* is carried by the objects $\{1,2,5,6\}$ aR1 aR2 aR5 aR6 $a^{R} = \{1, 2, 5, 6\}$ (an object set)

Formal context	(G,M,I)
Information system	$(U,V,R) \xrightarrow{\mapsto F(G,M)}$

The Formal Context F(G, M)

A definite object /attribute collection in which it is explicit given whether every object carry each referred attribute or not

R. Wille, Formal Concept Analysis as Mathematical Theory of Concepts and Concept Hierarchies in B. Ganter et al. (Eds.): Formal Concept Analysis, LNAI 3626 (2005) 133

Formal Concept Lattice

(X,Y) is called an FCL concept if $X^{I}=Y$ and $Y^{I}=X$

X is called the <u>FCL extent</u> and Y the <u>FCL intent</u>, e.g.,

* Find ALL the particular Object-set Attributeset pairs (X, Y) in which X (the extent) is the largest object set possessing Y in common. These pairs can be ordered as a Lattice since

 $X_1 \subseteq X_2 \iff (X_2)^I \subseteq (X_1)^I$

*

 $\forall Y \subseteq M \ (Y^I, Y^{II})$ is a formal concept for FCL

* $(X_{1},Y_{1}) \text{ and } (X_{2},Y_{2}) \text{ are nodes}$ $\Rightarrow (X_{1} \cap X_{2},Y_{1} \cup Y_{2}) \text{ is a node,}$ $e.g., \begin{cases} (\{1,3,4,6\},\{e\})\\ (\{1,2,5,6\},\{a\}) \end{cases} \Rightarrow (\{1,6\},\{a,e\}) \end{cases}$

Derivative Operators

Map object set to attribute set attribute set to object set

$$\begin{split} X &\subseteq G \ \mapsto \ X^{I} = \{m \in M \mid gRm, \ \forall g \in X\} \subseteq M, \\ Y &\subseteq M \ \mapsto \ Y^{I} = \{g \in G \mid gRm, \ \forall m \in Y\} \subseteq G, \\ X &\subseteq G \ \mapsto \ X^{\Box} = \{m \in M \mid \forall g \in G, gRm \implies g \in X\} \subseteq M, \\ Y &\subseteq M \ \mapsto \ Y^{\Box} = \{g \in G \mid \forall m \in M, gRm \implies m \in M\} \subseteq G, \\ X &\subseteq G \ \mapsto \ X^{\diamondsuit} = \{m \in M \mid \exists g \in G, (gRm, \ g \in X)\} \subseteq M, \\ Y &\subseteq M \ \mapsto \ Y^{\diamondsuit} = \{g \in G \mid \exists m \in M, (gRm, \ m \in M)\} \subseteq G, \end{split}$$

 X^{I} : all the attributes in which *X* possess in common X^{\Box} : all the attributes in which the objects outside *X* do not possess X^{\Diamond} : all the attributes which are carried by any member of *X*

Rough Set Lattice

Not to be confused with Rough Set Theory!

(X, Y) is called an RSL concept if $X^{\square} = Y$ and $Y^{\diamondsuit} = X$.

X is called the <u>RSL extent</u> and Y the <u>RSL intent</u>, e.g.,

$$\begin{array}{c} & X = \{3, 4, 6\} \\ & \text{gives} \end{array} \begin{cases} X^{\Box} = \{b\} \\ Y = \{b\} \end{cases} \\ Y^{\Diamond} = \{3, 4, 6\} \end{cases}$$

Find ALL the particular Object-set Attributeset pairs (X, Y) in which X (the extent) is the smallest object set having Y as peculiar property. These pairs can be ordered as a Lattice since

 $X_1 \subseteq X_2 \iff (X_1)^{\square} \subseteq (X_2)^{\square}$

*
$$\forall Y \subseteq M \quad (Y^{\diamond}, Y^{\diamond \Box}) \text{ is a RSL concept}$$

*

$$(X_{1},Y_{1}) \text{ and } (X_{2},Y_{2}) \text{ are nodes}$$

$$\Rightarrow (X_{1} \cup X_{2},Y_{1} \cup Y_{2}) \text{ is a node,}$$
e.g.,
$$\begin{cases} (\{1,3,4,6\},\{b,d,e\})\\ (\{1,2,5,6\},\{a,c,d\}) \end{cases} \Rightarrow (\{1,2,3,4,5,6\},\{a,b,c,d,e\}) \end{cases}$$

Y. Y. Yao, Concept lattices in rough set theory, Processing NAFIPS '04, IEEE Annual Meeting of the Fuzzy Information, Vol.2 (2004) 796-801

Issues with FCL and RSL

Given a formal context F(G, M)

 $(m^R, (m^R)^I)$ coincides with (Y^I, Y^{II}) and $(m^R, (m^R)^\Box)$ coincides with $(Y^{\diamondsuit}, Y^{\diamondsuit \Box})$

Some node from FCL Do Not appear as node from RSL!

Not to mention how hard the Lattice Constructions could be, e.g.,

S.O. Kuznetsov, On Computing the Size of a Lattice and Related Decision Problems; Order 18, 4 (2001), 313-321. S.O. Kuznetsov, S.A. Obiedkov, Comparing performance of algorithms for generating concept lattices; J. Exp. Theor. Artif. Intell. 14, 2-3 (2002), 189-216.

Issues with FCL and RSL

Can We Consistently Extend The List By Including More Columns Without Altering The Information Content ? m^R is categorised as an object class in both the FCL and RSL just <u>because m is</u> <u>listed in the table</u>.

M G	a	b	С	d	e	b+c	ae
1	X		X	X	X	X	X
2	Х		Х			X	
3		Х			X	X	
4		X			X	X	
5	Х						
6	X	X			X	X	X

Formal Context

Vs Truth Value Table

a	b	С	d	e	b+c	ae
Т	F	Т	T	T	T	T
T	F	T	F	F		F
F	T	F	F	T		F
Ľ	T	L	L	T	T	F
T	F	F	F	F	L	F
Т	T	F	F	T	T	T

The new formal context tells nothing new even with new columns. However, the new columns argue new nodes, while both FCL & RSL defy this. $(b+c)^{R} = \{1,2,3,4,6\}$ gives a new FCL extent $(a \cdot e)^{R} = \{1,6\}$ gives a new RSL extent, where $\begin{cases} b+c \text{ stands for } \underline{b \cdot C} \\ a \cdot e \text{ stands for } \underline{a \cdot AND \cdot e} \end{cases}$

> These Attributes Are Composite And Thus Should Not Be Adopted For The Categorisation 1

GCL is based on Generalized Attributes

Given a set *M* of attributes, the set M^* of <u>Generalised Attributes</u> refer to the <u>Composite Attributes</u> one may construct out of *M* by means of the operations $\left\{ \text{Conjunction}(\cdot), \text{Disjunction}(+), \text{Negation}(\neg) \right\}$

All the M^* members must be referred to in the Categorisation !!

* The formal context that can be interpreted as a Truth Value table readily furnishes such reference.

The Formal Context F(G,M) at hand is only a concise table structure, which can induce the complete information represented by the Extended Formal Context $F^*(G,M^*)$.

The Gcl Is To Be Based On F*(G,M*)

GCL node becomes 3-Tuple

Extended to $F^{*}(G, M^{*})$, M^{*} are all the possible composite attributes

 $\forall \mu \ \mu^R$ is a common extent for *RSL* and *FCL*, referred to as the General Extent $X = \mu^R$

 μ^{R} s exhaust all the possible General Extents; one obtains the General Concept as $(X, \rho(X), \eta(X))$

$$\eta(X) = \prod X^{I^*}$$
 $\rho(X) = \sum X^{\square^*}$ $(\rho(X))^R = (\eta(X))^R = X$

The General Concepts are well ordered as $X_{1} \subseteq X_{2} \Leftrightarrow \begin{cases} \rho(X_{1}) \leq \rho(X_{2}) \\ \eta(X_{1}) \leq \eta(X_{2}) \end{cases} \Leftrightarrow (X_{1}, \rho(X_{1}), \eta(X_{1})) \leq (X_{2}, \rho(X_{2}), \eta(X_{2})), \text{ thereby forming the General Concept Lattice (GCL).} \end{cases}$ • The pair $\rho(X), \eta(X)$ plays the role of General Intent $(\forall X \ \eta(X) \leq \rho(X)), \begin{cases} \rho(X) \text{ is the generalisation of RSL intent} \\ \eta(X) \text{ is the generalisation of FCL intent} \end{cases}$.

- The GCL is self-dual : $(X,\rho(X),\eta(X))$ is a node (general concept) $\Rightarrow (X,\rho(X),\eta(X))^{\dagger} \coloneqq (X^{c},\rho(X^{c}),\eta(X^{c}))$ is also a node.

Construct GCL explicitly

The General Concept
$$(X,\rho(X),\eta(X)) \equiv \begin{pmatrix} X \\ general extent \end{pmatrix}$$
, $\begin{bmatrix} X \\ general intent \end{pmatrix}$, $\begin{bmatrix} \eta(X) = \prod X^T \\ \rho(X) = \sum X^T \\ (\rho(X))^R = (\eta(X))^R = X \end{pmatrix}$

$$\begin{bmatrix} X \\ F = \left\{ \mu \in M^* \middle| \mu^R = X \right\} \equiv \left\{ \mu \in M^* \middle| \eta(X) \le \mu \le \rho(X) \right\} : \begin{bmatrix} X \\ F \end{bmatrix}_F \text{ is the closed interval } \begin{bmatrix} \eta(X), \rho(X) \end{bmatrix}.$$

$$\begin{bmatrix} \text{The upper bound } \rho(X) = \sum_{\text{members in } [X]_F} \begin{bmatrix} X \\ F \end{bmatrix}_F \in [X]_F \\ \text{The lower bound } \eta(X) = \prod_{\text{members in } [X]_F} \begin{bmatrix} X \\ F \end{bmatrix}_F \in [X]_F \\ \forall X_1 \in E_F \forall X_1 \in E_F \\ \forall X_i \in E_F \end{bmatrix} X_1 \neq X_2 \Leftrightarrow \begin{bmatrix} X_1 \\ F \end{bmatrix}_F \cap \begin{bmatrix} X_2 \\ F \end{bmatrix}_F = \emptyset \\ \forall X_i = M^* \end{bmatrix}, \quad D_1 = \{1\}$$

$$D_1 = \{1\}$$

$$D_2 = \{2\}$$

$$D_3 = \{3, 4\}$$

$$D_4 = \{5\}$$

$$D_5 = \{6\}$$

where $E_F = \{$ all the general extents $\}$ can be constructed out via all the possible unions of the smallest discernible object sets: $X = \bigcup_k D_k$ i.e. $\bigcup_{D_k \subseteq X} D_k$ $G_{/R} \coloneqq \{D_1, D_2, \dots D_{n_F}\} (|G_{/R}| = n_F), E_F = \{\bigcup \wp | \wp \subseteq G_{/R}\} (|E_F| = 2^{n_F}, \text{ which is the number of nodes})$ $X \in E_F \Leftrightarrow X^c \coloneqq G \setminus X \in E_F \text{ with } \begin{cases} \rho(X^c) = \neg \eta(X) \\ \eta(X^c) = \neg \rho(X) \end{cases}; \text{ <u>no need to calculate both !</u>} \end{cases}$

Invariant GCL

Restore FCL and RSL from GCL

Logic Implication of GCL

$$\begin{array}{c|c}
A \stackrel{FCL}{\rightarrow} B \iff A^{I} \subseteq B^{I} & \Pi A \to \Pi B \\
A \stackrel{RSL}{\rightarrow} B \iff A^{\Diamond} \subseteq B^{\Diamond} & \Sigma A \to \Sigma B \\
\end{array}$$

$$\begin{array}{c}
A^{RSL} B \iff A^{\Diamond} \subseteq B^{\Diamond} & \Sigma A \to \Sigma B \\
\end{array}$$

$$\begin{array}{c}
A^{I} \subseteq B^{I} \iff \mu_{1}^{R} \subseteq \mu_{2}^{R} & \text{with } \left\{ \begin{array}{c}
\mu_{1} = \prod A \\
\mu_{2} = \prod B \\
\end{array} \\
\vdots \\
\end{array}$$

$$\begin{array}{c}
A^{I} = \bigcap_{m \in A} m^{R} = (\prod A)^{R} = \mu_{1}^{R} \\
B^{I} = \bigcap_{m \in B} m^{R} = (\prod B)^{R} = \mu_{2}^{R} \\
A^{\Diamond} \subseteq B^{\Diamond} \iff \mu_{1}^{R} \subseteq \mu_{2}^{R} & \text{with } \left\{ \begin{array}{c}
\mu_{1} = \sum A \\
\mu_{2} = \sum B \\
\end{array} \\
\vdots \\
\end{array}$$

$$\begin{array}{c}
A^{\circ} = \bigcup_{m \in A} m^{R} = (\Sigma A)^{R} = \mu_{1}^{R} \\
B^{\diamond} = \bigcup_{m \in B} m^{R} = (\Sigma B)^{R} = \mu_{1}^{R} \\
B^{\diamond} = \bigcup_{m \in B} m^{R} = (\Sigma B)^{R} = \mu_{2}^{R} \\
\end{array}$$

$$\begin{array}{c}
\forall \mu_{1} \in M^{*} \forall \mu_{2} \in M^{*} \\
\end{array}$$

$$\begin{array}{c}
\mu_{1} \rightarrow \mu_{2} \Leftrightarrow \\
\mu_{1}^{R} \subseteq \mu_{2}^{R} \\
\end{array}$$

General Concept $(X, \rho(X), \eta(X)) \equiv (X, [X]_F)$: General Extent X, General Intent $[X]_F = [\eta(X), \rho(X)]$

$$\forall X \in E_F \qquad \begin{array}{l} \rho(X) \cdot 0_\rho = 0_\rho \quad \rho(X) + 0_\rho = \rho(X) \quad 0_\rho : \text{the Falsity for } \rho(X) \\ \eta(X) \cdot 1_\eta = \eta(X) \quad \eta(X) + 1_\eta = 1_\eta \quad 1_\eta : \text{the Truth for } \eta(X) \end{array} \begin{array}{l} \text{Contextual Truth and Falsity} \\ \rho(G) = 1 \quad \eta(G) = 1_\eta \\ \rho(\emptyset) = 0_\rho = -1_\eta \quad \eta(\emptyset) = 0 = -1 \end{array} \right.$$

Pairs of Squares Problem

Formal Concept Analysis

Bernhard Ganter

Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de

Description Logics Workshop Dresden 2008

 $1_{\eta} = -o - d - p - s - e - v + -o d - p - s - e - v + -o dp - s - e - v + o - dp - s - e$

 $+\neg o\neg dps\neg e\neg v+\neg o\neg d\neg p\neg s\neg ev+\neg o\neg dp\neg s\neg ev+o\neg d\neg p\neg s\neg e\neg v+\neg o\neg dpsev$

More than the FCL implications

A Swimming-Race Puzzle

Five competitors – A, B, C, D, and E – enter a swimming race that awards gold, silver, and bronze medals to the first three to complete it. Each of the following compound statements about the race is *false*, although one of the two clauses in each *may* be true.

- A didn't win the gold, and B didn't win the silver.
- D didn't win the silver, and E didn't win the bronze.
- C won a medal, and D didn't.
- A won a medal, and C didn't.
- D and E both won medals.

http://www.rinkworks.com/brainfood/p/discrete5.shtml

Who won each of the medals?

The PDS in NS resolves a problem based on suggested

parametrizations, which could be non-unique and tedious

the set of competitors be $\mathcal{Y} := \{A, B, C, D, E\}$

the set of medals be $\mathcal{M} = \{\mathbf{g} \text{old}, \mathbf{s} \text{ilver}, \mathbf{b} \text{ronze}\}$

 $m = \sum_{y \in \mathcal{Y}} y_m$ the medal *m* was won by some competitors.

choice made by Dave Wu 2013

The PDS in NS

The Swimming-Race Puzzle

	1 A didn't win the gold, and B didn't win the silver.	$A_{\mathbf{g}} + B_{\mathbf{s}}$, i.e., $\neg A_{\mathbf{g}} \neg B_{\mathbf{s}} \leftrightarrow 0$	
The Given False Statements	2 D didn't win the silver, and E didn't win the bronze.	$D_{\mathbf{s}} + E_{\mathbf{b}} \ (\neg D_{\mathbf{s}} \neg E_{\mathbf{b}} \leftrightarrow 0)$	
	3 C won a medal, and D didn't.	$\neg C + D \ (C \neg D \leftrightarrow 0)$	
$\mathcal{Y} := \{A, B, C, D, E\}$	4 A won a medal, and C didn't.	$\neg A + C \ (A \neg C \leftrightarrow 0)$	
$\mathcal{M} = \{ \mathbf{g} \text{old}, \mathbf{s} \text{ilver}, \mathbf{b} \text{ronze} \}$ $\mathcal{Y}^{\mathcal{M}} = \{ y_m \mid y \in \mathcal{Y}, m \in \mathcal{M} \}$	5 D and E both won medals.	$\neg D + \neg E \ (DE \leftrightarrow 0)$	
	6 each competitor obtained at most one of the medals	$\prod_{y \in Y} (y_{\mathbf{g}} y_{\mathbf{s}} y_{\mathbf{b}})$	
Some Implicit Conditions	7 one medal was not given twice	$\prod_{m \in \mathcal{M}} (A_m B_m C_m D_m E_m)$	
	8 all the three medals were awarded out	$\prod_{m \in \mathcal{M}} (A_m + B_m + C_m + D_m + E_m)$	
$(3,4,5) \iff (\neg C+D)(\neg A)$	$(A+C)(\neg D+\neg E)$	impossible to award	
$= CD\neg E + \neg C$	all	the medals out (contradicts $\underline{8}$)	
		<i>E</i> obtained no medal $\therefore D_s$ by 2	
$(3,4,5,\underline{8,6}) \iff CD \neg E \prod_{m \in \mathcal{M}}$	$(A_m + B_m + C_m + D_m + E_m) \cdot \prod_{y \in Y} (y_g y_s y_b)$	$\int \prod_{w} (D_{g} D_{g} D_{b} D_{b})$	
$(3,4,5,8,6,\underline{2}) \iff CD_{\mathbf{s}} \neg E(A_{\mathbf{g}} + \mathbf{z})$	$-P_{\mathbf{g}} + C_{\mathbf{g}}(A_{\mathbf{b}} + B_{\mathbf{b}} + C_{\mathbf{b}}) \prod_{(D)} (y_{\mathbf{g}} y_{\mathbf{b}}) \cdot (\neg D_{\mathbf{g}} \neg D_{\mathbf{b}})$	$\left\{ D_g \left(D_g D_s D_b \right) = D_g \overline{D}_s \overline{D}_b \right\}$	
	$y \neq D$		
	\mathbf{D} (\mathbf{D}) ($$	picks up only $A_g(B_b + C_b)$ by $\underline{1}$	
$(3,4,5,8,6,2,\underline{1,7}) \iff A_{\mathbf{g}}CD_{\mathbf{s}}\neg E(E)$ $(A_{\mathbf{b}} B_{\mathbf{b}} C_{\mathbf{b}} I)$	$B_{\mathbf{b}} + C_{\mathbf{b}}) \prod_{y \neq D, A} (y_{\mathbf{g}} y_{\mathbf{s}} y_{\mathbf{b}}) \cdot (\neg D_{\mathbf{g}} \neg D_{\mathbf{b}}) (\neg A_{\mathbf{s}} \neg A_{\mathbf{b}}) \cdot O_{\mathbf{b}} E_{\mathbf{b}}) (\neg B_{\mathbf{g}} \neg C_{\mathbf{g}}) (\neg A_{\mathbf{s}} \neg B_{\mathbf{s}} \neg C_{\mathbf{s}})$	picks up only $A_g(B_b + C_b)$ by <u>1</u> And so forth !!	
$(3,4,5,8,6,2,\underline{1,7}) \iff A_{\mathbf{g}}CD_{\mathbf{s}}\neg E(E)$ $(A_{\mathbf{b}} B_{\mathbf{b}} C_{\mathbf{b}} L)$	$B_{\mathbf{b}} + C_{\mathbf{b}}) \prod_{y \neq D, A} (y_{\mathbf{g}} y_{\mathbf{s}} y_{\mathbf{b}}) \cdot (\neg D_{\mathbf{g}} \neg D_{\mathbf{b}}) (\neg A_{\mathbf{s}} \neg A_{\mathbf{b}}) \cdot D_{\mathbf{b}} E_{\mathbf{b}}) (\neg B_{\mathbf{g}} \neg C_{\mathbf{g}}) (\neg A_{\mathbf{s}} \neg B_{\mathbf{s}} \neg C_{\mathbf{s}})$	picks up only $A_g(B_b + C_b)$ by <u>1</u> And so forth !! A won the Gold Medal	
$(3,4,5,8,6,2,\underline{1,7}) \iff A_{\mathbf{g}}CD_{\mathbf{s}}\neg E(E)$ $(A_{\mathbf{b}} B_{\mathbf{b}} C_{\mathbf{b}} L)$ $\equiv A_{\mathbf{g}}D_{\mathbf{s}}C_{\mathbf{b}}(\neg A)$	$B_{\mathbf{b}} + C_{\mathbf{b}}) \prod_{y \neq D, A} (y_{\mathbf{g}} y_{\mathbf{s}} y_{\mathbf{b}}) \cdot (\neg D_{\mathbf{g}} \neg D_{\mathbf{b}}) (\neg A_{\mathbf{s}} \neg A_{\mathbf{b}}) \cdot D_{\mathbf{b}} E_{\mathbf{b}}) (\neg B_{\mathbf{g}} \neg C_{\mathbf{g}}) (\neg A_{\mathbf{s}} \neg B_{\mathbf{s}} \neg C_{\mathbf{s}})$ $(\neg A_{\mathbf{b}}) (\neg D_{\mathbf{g}} \neg D_{\mathbf{b}}) (\neg C_{\mathbf{g}} \neg C_{\mathbf{s}}) \neg B \neg E_{\mathbf{b}}$	picks up only $A_g(B_b + C_b)$ by <u>1</u> And so forth !! A won the Gold Medal D the Silver	

The PDS in NS as a problem solver

The allowable parametrisation is not unique: expert's formulation could be less intuitive; intuitive construction could be less concise.

 $\frac{\text{Predicate}(\text{Subject}) = \text{Attribute}(\text{Object}):}{\text{the choice of parametrisation } \mathcal{Y} := \{A, B, C, D, E\}} \quad \mathcal{M} = \{\text{gold, silver, bronze}\} \quad \mathcal{Y}^{\mathcal{M}} = \{y_m \mid y \in \mathcal{Y}, m \in \mathcal{M}\} \\ \text{suggests implicit objects, which are referred to as all the possible cases one may encouter :} \\ \frac{A_g + B_s}{D_s + E_b} = \frac{D_s + E_b}{-C + D} = \frac{D_s - E}{-D} = \frac{\prod_{y \in Y} (|y_g|y_s|y_b|)}{\prod_{m \in \mathcal{M}} (A_m |B_m|C_m|D_m|E_m)} = \frac{\prod_{w \in \mathcal{M}} (A_m + B_m + C_m + D_m + E_m)}{(all cases)} \\ \text{(all cases)}$

Explicit objects are also possible!!

- Entities that are individuals are suitable candidates for the objects.
- Employing the parametrisation that comprises more objects,

More PDSs in NS on different objects are to be dealt with in parallel (component-wise), Simultaneous consistency on every object (component) must be ensured.

The PDS in NS as a problem solver	Who keeps fish? The Englishman lives in the red house. The Swede keeps dogs. The Dane drinks tea. The green house is just to the left of the white one. The owner of the green house drinks coffee. The Pall Mall smoker keeps birds. The owner of the yellow house smokes Dunhills. The man in the center house drinks milk. The Blend smoker has a neighbor who keeps cats. The man who smokes Blue Masters drinks bier. The man who keeps horses lives next to the Dunhill smoker. The German smokes Prince. The Norwegian lives next to the blue house. The Blend smoker has a neighbor who drinks water. https://web.stanford.edu/-laurik/fsmbook/examples/Einstein'sPuzzle.html					
	N Nationality	n_1 England	no Sweden	na Denmark	n ₄ Germany	n= Norway
	C Colour of house	a Rod	a Croop	a White		a- Blue
					L D	C5 Diue
	T Beverage	t_1 lea	t ₂ Conee	t ₃ Milk	t_4 Beer	t_5 water
	P Pet	p_1 Dog	p_2 Bird	p_3 Cat	p_4 Horse	p_5 (Fish)
	S Brand of cigarettes	s_1 Pall Mall	s_2 Dunhill	s_3 Blue Masters	s_4 Prince	s_5 Blend
Choose the houses as objects: $\begin{bmatrix}property & property & property & property & property & of & h_1 & h_2 & h_3 & h_4 & h_5 \end{bmatrix}$						

1 the Brit lives in the red house	$n_1c_1+ egn n_1 egc_1 \ (ext{i.e.} \ n_1 \leftrightarrow c_1)$				
2 the Swede keeps dogs as pets	$n_2p_1+ eg n_2 eg p_1 \ (n_2\leftrightarrow p_1)$				
3 the Dane drinks tea	$n_3t_1+ eg n_3 eg t_1\;(n_3\leftrightarrow t_1)$				
4 the green house is on the left of the white house	$[c_2, c_3, 1, 1, 1] + [1, c_2, c_3. 1, 1] + \dots$				
5 the green house's owner drinks coffee	$c_2t_2+ eg c_2 eg t_2\ (c_2\leftrightarrow t_2)$				
6 the Pall Mall smoker keeps birds	$s_1p_2+\neg s_1\neg p_2 (s_1\leftrightarrow p_2)$				
7 the owner of the yellow house smokes Dunhill	$c_4s_2+\neg c_4\neg s_2 \ (c_4\leftrightarrow s_2)$				
8 the man living in the center house drinks milk	$[{f 1},{f 1},t_3,{f 1},{f 1}]$				
v_{-}	\rightarrow $[n_5, 1, 1, 1, 1]$				
9 the Norwegian lives in the first nouse v_{\leftarrow}	$\leftarrow \qquad \qquad [1,1,1,1,n_5]$				
the Blend smoker lives	$[p_3, s_5, 1, 1, 1] + [1, p_3, s_5, 1, 1] + [1, 1, p_3, s_5, 1] + [1, 1, 1, p_3, s_5]$				
next to the one who 16^*	$(n_1 n_2 n_3 n_4 n_5)$				
the man who keeps h 16^{**}	$\forall n \in N \ [n, \neg n, \neg n, \neg n, \neg n] + [\neg n, n, \neg n, \neg n] + \dots$				
lives next to the Dun $\frac{17^*}{1000000000000000000000000000000000000$	$(c_1 c_2 c_3 c_4 c_5)$				
12 the man who smokes $\frac{17^{\star\star}}{17^{\star\star}}$	$\forall c \in C \ [c, \neg c, \neg c, \neg c] + [\neg c, c, \neg c, \neg c] + \dots$				
13 the German smokes $1\frac{18^{\star}}{1}$ the beverage is unique	$(t_1 t_2 t_3 t_4 t_5)$				
14. the Nerrorien lines -	$\forall t \in T \ [t, \neg t, \neg t, \neg t] + [\neg t, t, \neg t, \neg t] + \dots$				
14 the Norwegian lives i 19^* the pet is unique	$(p_1 p_2 p_3 p_4 p_5)$				
the Blend smoker	$\forall p \in P \ [p, \neg p, \neg p, \neg p] + [\neg p, p, \neg p, \neg p] + \dots$				
15 20 the type of cigarettes is un	$e \qquad \qquad$				
the solutions for v_{\rightarrow} and v_{\leftarrow} :					
in both cases $c_2n_4 p_5 s_4t_2$ (but different houses). $v \rightarrow [c_4n_5p_3s_2t_5, c_5n_3p_4s_5t_1, c_1n_1p_2s_1t_3, c_2n_4p_5s_4t_2, c_3n_2p_1s_3t_4]$					
$p_i \equiv p_i \prod_{j \neq i} \overline{p}_j, \ s_i \equiv s_i \prod_{j \neq i} \overline{s}_j, \ t_i \equiv t_i \prod_{j \neq i} \overline{t}_j. \qquad v_{\leftarrow} [c_2 n_4]$	$p_5s_4t_2, c_3n_2p_1s_3t_4, c_1n_1p_2s_1t_3, c_5n_3p_4s_5t_1, c_4n_5p_3s_2t_5]$				
	1the Brit lives in the red house2the Swede keeps dogs as pets3the Dane drinks tea4the green house is on the left of the white house5the green house's owner drinks coffee6the Pall Mall smoker keeps birds7the owner of the yellow house smokes Dunhill8the man living in the center house drinks milk9the Norwegian lives in the first house0the Blend smoker lives10the man who keeps h11lives next to the Dun12the man who smokes13the German smokes14the Norwegian lives r15has a neighbour who16li**17the pet is unique19**10the type of cigarettes is unique15has a neighbour who16the type of cigarettes is unique17*the pet is unique19*the type of cigarettes is unique19*the type of cigarettes is unique10the type of cigarettes is unique10the type of cigarettes is unique11is12the norwegian lives r13the Blend smoker15has a neighbour whohas a neighbour whothe solutions for v_{\rightarrow} and v_{\leftarrow} :creent houses). $v_{\rightarrow} [c_4 n_5]$ $v_{\mu} = p_i \prod_{j \neq i} \overline{p}_j$, $s_i \equiv s_i \prod_{j \neq i} \overline{s_j}$, $t_i \equiv t_i \prod_{j \neq i} \overline{t_j}$.				