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The ATLAS Experiment
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The Higgs Boson Discovery in 2012



Worldwide LHC Computing Grid (WLCG)

• A global computing collaboration for LHC
→ Tier0 is CERN

• The Tokyo regional analysis center is 
one of Tier2 for ATLAS
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42 countries
170 computing centers
Over 2 million tasks run every day
1 million computer cores
1 exabyte of storage
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Computing Resources for HEP
• Data amount of HEP experiments becomes larger and larger
→Computing resource is one of the important piece for experiments
• CERN plans High-Luminosity LHC
→The peak luminosity: x 5
→Current system does not have

enough scaling power
→Some new ideas are necessary

to use data effectively
→Software update
→New devices: GPGPU, FPGA, (QC)
→New grid structure: Data Cloud
→External resources: HPC, Commercial cloud
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The Tokyo regional analysis center
• The computing center at ICEPP, the University of Tokyo
• Supports ATLAS VO as one of the WLCG Tier2 sites
→Provides local resources to the ATLAS Japan group, too
• All hardware devices are supplied by the three years rental
• Current system (Starting from Jan/2019):
→Worker node: 10,752cores (HS06: 18.97/core)

(7,680 for WLCG, 145689.6 HS06*cores), 
3.0GB/core

→File server: 15,840TB,
(10,560TB for WLCG)
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Tape library

Disk storage

Worker node
~270m2



The Tokyo regional analysis center
• The computing center at ICEPP, the University of Tokyo
• Supports ATLAS VO as one of the WLCG Tier2 sites
→Provides local resources to the ATLAS Japan group, too
• All hardware devices are supplied by the three years rental
• Current system (Starting from Jan/2019):
→Worker node: 10,752cores (HS06: 18.97/core)

(7,680 for WLCG, 145689.6 HS06*cores), 
3.0GB/core

→File server: 15,840TB,
(10,560TB for WLCG)
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TOKYO-LCG2 provides
6% of Tier 2

Tier 2 Grid Accounting (Jan-Mar 2019)



Commercial Cloud
• Google Cloud Platform (GCP)
→Number of vCPU, Memory are customizable
→CPU is almost uniform:
→At TOKYO region, only Intel Broadwell (2.20GHz) or Skylake (2.00GHZ) 

can be selected (they show almost same performances)
→Hyper threading on
• Amazon Web Service (AWS)
→Different types (CPU/Memory) of machines

are available
→Hyper threading on
→HTCondor supports AWS resource management from 8.8
• Microsoft Azure
→Different types (CPU/Memory) of machines

are available
→Hyper threading off machines are available
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• HT On
→ All Google Computing Element (GCE) at GCP are HT On
→ TOKYO system is HT off

Google Computing Element

→ Broadwell and Skylake show similar specs
→ Costs are same. But if instances are restricted to Skylake, instances will be preempted more
→ Better not to restrict CPU generation for preemptible instances

→ GCE spec is ~half of TOKYO system

• Preemptible Instance
→ Shut down every 24 hours
→ Could be shut down before 24 hours depending on the system condition
→ The cost is ~1/3
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System Core(vCPU) CPU SPECInt/core HEPSPEC ATLAS simulation 
1000events (hours)

TOKYO system: HT off 32 Intel(R) Xeon(R) Gold 6130 
CPU @ 2.10GHz 46.25 18.97 5.19

TOKYO system: HT on 64 Intel(R) Xeon(R) Gold 6130 
CPU @ 2.10GHz N/A 11.58 8.64

GCE (Broadwell) 8 Intel(R) Xeon(R) CPU E5-
2630 v4 @ 2.20GHz (39.75) 12.31 9.32

GCE (Broadwell) 1 Intel(R) Xeon(R) CPU E5-
2630 v4 @ 2.20GHz (39.75) 22.73 N/A

GCE (Skylake) 8 Intel(R) Xeon(R) Gold 6138 
CPU @ 2.00GHz (43.25) 12.62 9.27

• SPECInt (SPECint_rate2006):
• Local system: Dell Inc. PowerEdge M640
• GCE(Google Compute Engine)’s value were taken from Dell system with same corresponding CPU 
• GCE (Broadwell): Dell Inc PowerEdge R630
• GCE (Skylake): Dell Inc. PowerEdge M640

• ATLAS simulation: Multi process job 8 processes
• For 32 and 64 core machine, 4 and 8 parallel jobs were run to fill cores, respectively



Current Our System
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The Tokyo regional analysis center

CEATLAS 
Central

Panda

Tasks
submitted through
WLCG system 
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Task
Queues

HTCondor
Sched

SE

Storage

Worker node

• Panda: ATLAS job management system, 
using WLCG framework

• ARC-CE: Grid front-end
• HTCondor: Job scheduler



Hybrid System
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The Tokyo regional analysis center
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• Some servers need certifications for WLCG
→There is a political issue to deploy such servers on cloud

→No clear discussions have been done for the policy of such a case
• Cost of storage is high

→Additional cost to extract data
• Only worker nodes (and some supporting servers) were 

deployed on cloud, and other services are in on-premises
→Hybrid system



On-premises

Cost Estimation
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Manager

Storage

Worker node

Full on-premises system Full cloud system Hybrid System

Data export to other sites

• For GCP, use 20k to have comparable spec
→ Use Preemptible Instance

• 8PB storage which is used at ICEPP for now
• Cost to export data from GCP

https://cloud.google.com/compute/pricing
https://cloud.google.com/storage/pricing

• Estimated with Dell machines
• 10k cores, 3GB/core memory, 

35GB/core disk: $5M
• 16PB storage: $1M
• Power cost: $20k/month

→ For 3 years usage: ~$200k/month 
(+Facility/Infrastructure cost, 
Hardware Maintenance cost, etc…)  

https://cloud.google.com/compute/pricing
https://cloud.google.com/storage/pricing


On-premises

Cost Estimation
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Manager

Storage Worker node

Job 
Manager

Storage Worker node

On-premises

Job 
Manager

Storage

Worker node

Full on-premises system Hybrid System

Resource Cost/month
vCPU x20k $130k 
3GB  x20k $52k 
Local Disk 35GBx20k $28k
Storage 8PB $184k
Network
Storage to Outside
600 TB

$86k

Resource Cost/month
vCPU x20k $130k 
3GB  x20k $52k 
Local Disk 35GBx20k $28k
Network
GCP WN to ICEPP Storage
300 TB

$43k

Total cost: $243k/month 
+ on-premises costs 
(storage $30k/month + others)

Total cost: $480k/month

Data export to other sites

• Estimated with Dell machines
• 10k cores, 3GB/core memory, 

35GB/core disk: $5M
• 16PB storage: $1M
• Power cost: $20k/month

→ For 3 years usage: ~$200k/month 
(+Facility/Infrastructure cost, 
Hardware Maintenance cost, etc…) 

Full cloud system



Technical Points on HTCndor with GCP
• No swap is prepared as default:
→ No API option is available, need to make swap by a startup script

• Memory must be 256MB x N
• yum-cron is installed and enabled by default
→ Better to disable to manage packages (and for performance)

• Preemptible machine
→ The cost is ~1/3 of the normal instance
→ It is stopped after 24 h running
→ It can be stopped even before 24 h by GCP (depends on total system usage)
→ Better to run only 1 job for 1 instance

• Instances are under VPN
→ They don’t know own external IP address
→ Use HTCndor Connection Brokering (CCB)
→ CCB_ADDRESS = $(COLLECTOR_HOST)

• Instance’s external address is changed every time it is started
→ Static IP address is available, but it needs additional cost
→ To manage worker node instance on GCP, a management tool has been developed:
→ Google Cloud Platform Condor Pool Manager (GCPM)
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Google Cloud Platform Condor Pool Manager
• https://github.com/mickaneda/gcpm

→ Can be installed by pip:
→ $ pip install gcpm

• Manage GCP resources and HTCondor’s worker node list
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Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine 
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Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine 
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Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine 
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Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine 
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Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine 
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• Set to execute `condor_off -peacefull –startd` after 10min by the startup script 
for GCE instance

• When a job finished, the instance is removed from `condor_status` list
• Then GCPM deletes (sotps) the instance



ARC CE Hacking
• ARC checks a number of available slots before submitting jobs 
→ If a job specifies a number of CPUs and there are not enough slots, job 

submission fails
→GCP pool has no slot at the start, jobs cannot be submitted
→Hack /usr/share/arc/Condor.pm to return non-zero cpus if it is zero 
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#
# returns the total number of nodes in the cluster
#
sub condor_cluster_totalcpus() {

# List all machines in the pool. Create a hash specifying the    
TotalCpus

# for each machine.
my %machines;
$machines{$$_{machine}} = $$_{totalcpus} for @allnodedata;

my $totalcpus = 0;
for (keys %machines) {

$totalcpus += $machines{$_};
}

# Give non-zero cpus for dynamic pool
$totalcpus ||= 100;
return $totalcpus;

}



System for R&D
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The Tokyo regional analysis center
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GCE Instance limit for R&D
• 1 vCPU instances: Memoery 2.6GB, Disk 50GB, max 200 instances
• 8 vCPU instances: Memory 19.2GB, Disk 150GB, max 100 instances
→ Total vCPU max: 1000 



Jobs Running on GCP
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Analysis job: 1core idle 
Production job: 8cores idle
Analysis job: 1core running 
Production job: 8cores running

Number of jobs Number of vCPUs

Analysis job: 1core
Production job: 1core 
Production job: 8cores

Monitors of job starting time

HTCondor status monitor

vC
PU

s

1.0k

2.0k

0

Analysis job: 1core
Production job: 1core 
Production job: 8cores



1 Day Real Cost
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Hybrid system: 1k cores, 2.4GB/core memory
→ Cost for month (x30), with 20k  cores (x20): ~$240k + on-premises costs 

Worker node

On-premises

Job 
Manager

Storage

Usage Cost/day x30x20
vCPU (vCPU*hours) 20046 $177 $106k
Memory (GB*hours) 47581 $56 $34k
Disk (GB*hours) 644898 $50 $30k
Network (GB) 559 $78 $47k
Other services $30 $18k
Total $391 $236k

vCPU: 1vCPU instances max 200, 8 vCPUs instances max 100
Memory: 2.4 GB/vCPU
Disk: 50GB for 1vCPU instance, 150 GB for 8 vCPUs instance

Resource Cost/month
vCPU x20k $130k 
3GB  x20k $42k 
Local Disk 35GBx20k $28k
Network
GCP WN to ICEPP Storage
300 TB

$43k

Total $243k

1 Day Real Cost (13/Feb)
Cost Estimation



Failure Rate (Production Jobs)
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Succeeded
Failed

GCP Worker Nodes
(Production Job)

ICEPP Worker Nodes
(Production Job)

Job Type Error rate
GCP Production (Preemptible) 35%
GCP Production (Non-Preemptible) 6%
Local Production 11%

Succeeded
Failed

Mainly 8 core jobs, long jobs (~10 hours/job)



Failure Rate (Analysis Jobs)
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Succeeded
Failed

GCP Worker Nodes
(Analysis Job)

ICEPP Worker Nodes
(Analysis Job)

Job Type Error rate
GCP Analysis (Preemptible) 19%
GCP Analysis (Non-Preemptible) 14%
Local Analysis 8%

Succeeded
Failed

Only 1 core job, shorter jobs



Preemption
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Not Preempted
Preempted

Not preempted
Preempted

1 core instances 8 core instances



Preemption v.s. Failure jobs
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Not Preempted
Preempted

Not preempted
Preempted

• 5~30 % instances were shut down by Preemption
→Made failure jobs
• Typically shut down around 3~10 hours
→Some instances were shutdown before 1 hours running
• More preemptions in 8 core jobs (production: reco/sim) 

because job running times are longer



Summary
• The cost of GCP is reasonable
→Same order compared with on-premises, if preemptible 

instances are used

• Hybrid system with GCPM works on the ATLAS Production 
System in WLCG
→HTCondor+GCPM can work for small clusters, too,

in which CPUs are always not fully used
→You need to pay only for what you used 

• Failure due to preemptible instances
→10~30% higher rates compared to jobs in the local nodes
→The cost performance is still better to use preemptible instances

→Shorter jobs are less affected
28



Plan
• Dynamic Memory Assignment

• Use AWS, Azure, IBM
→HTCondor natively supports 

AWS worker nodes (condor_annex)

• Non-CPU pools
→GPU, FPGA(AWS), 

TPU (GCP), Inferenita (AWS), Brainwave(Azure)
→HPC 
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Backup
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On-premises

Cost Estimation
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~184TB/month (for 6k core)
→ 300TB/month for 10k core• Estimated with Dell machines

• 10k cores, 3GB/core memory, 
35GB/core disk: $5M

• 16PB storage: $1M
• Power cost: $20k/month

→ For 3 years usage: ~$200k/month 
(+Facility/Infrastructure cost, 
Hardware Maintenance cost, etc…) 



Output file size fluctuation
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Usage Cost/day x30x20
vCPU (vCPU*hours) 20046 $177 $106k
Memory (GB*hours) 47581 $56 $34k
Disk (GB*hours) 644898 $50 $30k
Network (GB) 559 $78 $47k
Other services $30 $18k
Total $391 $236k

1 Day Real Cost (13/Feb)
Usage Cost/day x30x20

vCPU (vCPU*hours) 21974 $194 $116k
Memory (GB*hours) 52014 $61 $37k
Disk (GB*hours) 569081 $44 $26k
Network (GB) 1713 $239 $143k
Other services $28 $17k
Total $566 $340k

1 Day Real Cost (15/Feb)

Sum of output file size shows large fluctuation
→ Sometimes it becomes ~x5

~170TB/month (for 6k core)
→ 480GB/day/500 core (~1k core@GCP)

GCP R&D (10/Feb~20/Feb) TOKYO site (last year)



Required Memory
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Some 2.5GB memory jobs

Analysis 1 core

This includes MCORE_HIMEM queue jobs
Multicore jobs requires smaller memory
Even MCORE_HIMEM jobs requires less than 2GB/core?

Extracted from jobs to TOKYO_SL7 and ANALY_TOKYO_SL7
TOKYO site has MCORE_HIMEM queue



MCORE_HIMEM Job Example
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https://bigpanda.cern.ch/job?pandaid=4288126400

https://bigpanda.cern.ch/job?pandaid=4288126400


Payment
• A payment to GCP is done by Credit Card (or through 

Bank in some countries) as a late payment
→Our institute system doesn’t allow such a payment
→Only pre-payed, fixed price
• To make such a payment, we use a payment agency
→There are a lot of agencies in Japan, maybe in other 

countries, too
• There are some differences in the prices between the 

(our) agency and GCP direct payment
→No Sustained Use Discount (up to 60% discount) neither 

Committed Use Discounts (50%~70%) is applied
→Preemptible discount (~1/3 cost) is same as direct
→Original discount (~a few %?) is applied
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Failure Rate (Non-Preemptible)
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GCP Worker Nodes
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Failed

GCP Worker Nodes
(Analysis Job)



Failure Rate (Wall time)
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GCP Worker Nodes
(Production Job)

ICEPP Worker Nodes
(Production Job)
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Failed



Failure Rate (Wall time)
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Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine 
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Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine 

40

On-premises

CE

Worker node
Compute 
Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCP condor pool 
manager

Check 
queue status

Job Submission

Cloud 
Storage

pool_password

SQUID
(for CVMFS)
Compute 
EnginePrepare before starting WNs

Update
WN list

pool_password file
for the authentication
is taken from storage
by startup script 



Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine
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Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine 

42

On-premises

CE

Worker node
Compute 
Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCP condor pool 
manager

Check 
queue status

Job Submission

Cloud 
Storage

pool_password

SQUID
(for CVMFS)
Compute 
EnginePrepare before starting WNs

Update
WN list



Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine 
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• Set to execute `condor_off -peacefull –startd` after 10min by the startup script 
for GCE instance

• When a job finished, the instance is removed from `condor_status` list
• Then GCPM deletes (sotps) the instance



Other Features of GCPM
• Configuration files:
→YAML format

• Machine options are fully customizable
• Can handle instances with different number of cores
• Max core in total, max instances for each number of cores
• Management of other than GCE worker nodes
→ Static worker nodes
→ Required machines 
→ Working as an orchestration tool

• Test account
• Preemptible or not
• Reuse instances or not
• Pool_password file management
• Puppet files are available for 
→GCPM set
→Example worker node/head node for GCPM
→Example frontier squid proxy server at GCP
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Evicted Jobs
• Some of failed jobs’ Panda log show an error like:
→already running elsewhere - aborting
• At condor logs, these jobs were evicted and resubmitted:
→ShadowLog:
12/14/18 11:03:22 (10186.0) (2279157): Job 10186.0 is being evicted from gcp-wn-8core-0008.c.grid-test-204503.internal

• Panda system can not manage such a case
→Because the first connection was not closed correctly and is remained

• Such eviction happens in our local worker nodes
→But very small rate (< 1%) 
• It could be connectability between Head node and WN node
→Preemption can make it
→Some non-preempted instance also showed it
→Could be failing to extract preempted flag?
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GitHub

Travis CI

Local Machine

The Python Package Index (PyPI)
($ pip install gcpm)

Package manager: Poetry
CLI: made with python-fire
License: Apache 2.0

Tests by pytest
On Ubuntu Xenial
For python 2.7, 3.5, 3.6, 3.7 

pytest-cov result
(in gh-pages branch)

Secret files are encrypted by git-crypt 
travis encrypt-file is also used for travis job
(service account file for gcp, etc…)

https://github.com/mickaneda/gcpm
https://travis-ci.org/mickaneda/gcpm
https://pypi.org/project/gcpm/
https://github.com/sdispater/poetry
https://github.com/google/python-fire
https://www.apache.org/licenses/LICENSE-2.0
https://docs.pytest.org/en/latest/
https://github.com/pytest-dev/pytest-cov
https://mickaneda.github.io/gcpm/
https://github.com/AGWA/git-crypt
https://docs.travis-ci.com/user/encrypting-files/
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GitHub

Travis CI

Local Machine

The Python Package Index (PyPI)
($ pip install gcpm)

Package manager: Poetry
CLI: made with python-fire
License: Apache 2.0

Tests by pytest
On Ubuntu Xenial
For python 2.7, 3.5, 3.6, 3.7 

Secret files are encrypted by git-crypt 
travis encrypt-file is also used for travis job
(service account file for gcp, etc…)

gcpm
|--|-- pyproject.toml

|-- src
|    |-- gcpm
|    |    |-- __init__.py
|    |    |-- __main__.py
|    |    |-- __version__.py
|    |    |-- cli.py
|    |    |-- core.py
|-- tests
|    |-- __init__.py
|    |-- conftest.py
|    |-- data
|    |    |-- gcpm.yml
|    |    |-- service_account.json
|    |-- test_cli.py

Package manager: Poetry
Directory Structure

• Package initialization
• Management of package dependencies
• Build & Publish to PyPi
• Automatic virtualenv management
• Easy to make CLI tool

$ poetry init                         # Initialize package 
$ poetry add fire                 # Add fire to dependencies
$ poetry run gcpm version  # Run gcpm in virtualenv
$ poetry run pytest              # Run pytest in virtualenv
$ poetry publish –build        # Build and publsh to PyPi

https://github.com/mickaneda/gcpm
https://travis-ci.org/mickaneda/gcpm
https://pypi.org/project/gcpm/
https://github.com/sdispater/poetry
https://github.com/google/python-fire
https://www.apache.org/licenses/LICENSE-2.0
https://docs.pytest.org/en/latest/
https://github.com/AGWA/git-crypt
https://docs.travis-ci.com/user/encrypting-files/
https://github.com/sdispater/poetry


Develop Environment for Python-GCPM

48

GitHub

Travis CI

Local Machine

The Python Package Index (PyPI)
($ pip install gcpm)

Package manager: Poetry
CLI: made with python-fire
License: Apache 2.0

Tests by pytest
On Ubuntu Xenial
For python 2.7, 3.5, 3.6, 3.7 

pytest-cov result
(in gh-pages branch)

Secret files are encrypted by git-crypt 
travis encrypt-file is also used for travis job
(service account file for gcp, etc…)

CLI: made with python-fire

• Library for automatically 
generating CLI from absolutely 
any Python object

from .core import Gcpm
import fire

class CliObject(object):

def __init__(self, config=""):
self.config = config

def version(self):
Gcpm.version()

def run(self):
Gcpm(config=self.config).run()

def cli():
fire.Fire(CliObject)

if __name__ == "__main__":
cli()

$ gcpm version
gcpm: 0.2.0
$ gcpm –-config /path/to/config run
Starting gcpm
… 

https://github.com/mickaneda/gcpm
https://travis-ci.org/mickaneda/gcpm
https://pypi.org/project/gcpm/
https://github.com/sdispater/poetry
https://github.com/google/python-fire
https://www.apache.org/licenses/LICENSE-2.0
https://docs.pytest.org/en/latest/
https://github.com/pytest-dev/pytest-cov
https://mickaneda.github.io/gcpm/
https://github.com/AGWA/git-crypt
https://docs.travis-ci.com/user/encrypting-files/
https://github.com/google/python-fire
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GitHub

Travis CI

Local Machine

The Python Package Index (PyPI)
($ pip install gcpm)

Package manager: Poetry
CLI: made with python-fire
License: Apache 2.0

Tests by pytest
On Ubuntu Xenial
For python 2.7, 3.5, 3.6, 3.7 

pytest-cov result
(in gh-pages branch)

Secret files are encrypted by git-crypt 
travis encrypt-file is also used for travis job
(service account file for gcp, etc…)

Source code at: GitHub

• Open source
• License: Apache 2.0

• Automatic test/build on Travis CI at push

https://github.com/mickaneda/gcpm
https://travis-ci.org/mickaneda/gcpm
https://pypi.org/project/gcpm/
https://github.com/sdispater/poetry
https://github.com/google/python-fire
https://www.apache.org/licenses/LICENSE-2.0
https://docs.pytest.org/en/latest/
https://github.com/pytest-dev/pytest-cov
https://mickaneda.github.io/gcpm/
https://github.com/AGWA/git-crypt
https://docs.travis-ci.com/user/encrypting-files/
https://github.com/mickaneda/gcpm
https://www.apache.org/licenses/LICENSE-2.0
https://travis-ci.org/mickaneda/gcpm
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GitHub

Travis CI

Local Machine

The Python Package Index (PyPI)
($ pip install gcpm)

Package manager: Poetry
CLI: made with python-fire
License: Apache 2.0

Tests by pytest
On Ubuntu Xenial
For python 2.7, 3.5, 3.6, 3.7 

pytest-cov result
(in gh-pages branch)

Secret files are encrypted by git-crypt 
travis encrypt-file is also used for travis job
(service account file for gcp, etc…)

Test/Build on Travis CI

• Run pytest for every push
• Tested with python2.7, 3.4, 3.5, 3.6 and 3.7-dev
• Build & publish to PyPi after test on Tag may be 

useful (not implemented)

https://github.com/mickaneda/gcpm
https://travis-ci.org/mickaneda/gcpm
https://pypi.org/project/gcpm/
https://github.com/sdispater/poetry
https://github.com/google/python-fire
https://www.apache.org/licenses/LICENSE-2.0
https://docs.pytest.org/en/latest/
https://github.com/pytest-dev/pytest-cov
https://mickaneda.github.io/gcpm/
https://github.com/AGWA/git-crypt
https://docs.travis-ci.com/user/encrypting-files/
https://travis-ci.org/mickaneda/gcpm
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GitHub

Travis CI

Local Machine

The Python Package Index (PyPI)
($ pip install gcpm)

Package manager: Poetry
CLI: made with python-fire
License: Apache 2.0

Tests by pytest
On Ubuntu Xenial
For python 2.7, 3.5, 3.6, 3.7 

pytest-cov result
(in gh-pages branch)

Secret files are encrypted by git-crypt 
travis encrypt-file is also used for travis job
(service account file for gcp, etc…)

pytest-cov result in gh-pages branch
• Test coverage is measured by pytest-cov
• There result is published in gh-pages of gcpm 

repository at GitHub

https://github.com/mickaneda/gcpm
https://travis-ci.org/mickaneda/gcpm
https://pypi.org/project/gcpm/
https://github.com/sdispater/poetry
https://github.com/google/python-fire
https://www.apache.org/licenses/LICENSE-2.0
https://docs.pytest.org/en/latest/
https://github.com/pytest-dev/pytest-cov
https://mickaneda.github.io/gcpm/
https://github.com/AGWA/git-crypt
https://docs.travis-ci.com/user/encrypting-files/
https://github.com/pytest-dev/pytest-cov
https://mickaneda.github.io/gcpm/
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GitHub

Travis CI

Local Machine

The Python Package Index (PyPI)
($ pip install gcpm)

Package manager: Poetry
CLI: made with python-fire
License: Apache 2.0

Tests by pytest
On Ubuntu Xenial
For python 2.7, 3.5, 3.6, 3.7 

pytest-cov result
(in gh-pages branch)

Secret files are encrypted by git-crypt 
travis encrypt-file is also used for travis job
(service account file for gcp, etc…)

Published on the Python Package Index (PyPI)

$ pip install gcpm

https://github.com/mickaneda/gcpm
https://travis-ci.org/mickaneda/gcpm
https://pypi.org/project/gcpm/
https://github.com/sdispater/poetry
https://github.com/google/python-fire
https://www.apache.org/licenses/LICENSE-2.0
https://docs.pytest.org/en/latest/
https://github.com/pytest-dev/pytest-cov
https://mickaneda.github.io/gcpm/
https://github.com/AGWA/git-crypt
https://docs.travis-ci.com/user/encrypting-files/
https://pypi.org/project/gcpm/

