
R&D for the expansion
of the Tokyo regional analysis center

using Google Cloud Platform

M. Kaneda, J.Tanaka, T. Mashimo,
R. Sawada, T. Kishimoto and N. Matsui

The International Center for Elementary Particle Physics (ICEPP),
The University of Tokyo

1

05/Apr/2019, ISGC 2019, Taipei, Taiwan

The ATLAS Experiment

2
The Higgs Boson Discovery in 2012

Worldwide LHC Computing Grid (WLCG)

• A global computing collaboration for LHC
→ Tier0 is CERN

• The Tokyo regional analysis center is
one of Tier2 for ATLAS

3

42 countries
170 computing centers
Over 2 million tasks run every day
1 million computer cores
1 exabyte of storage

Number of cores used by ATLAS

500,000

300,000

200,000

100,000

0

400,000

Computing Resources for HEP
• Data amount of HEP experiments becomes larger and larger
→Computing resource is one of the important piece for experiments
• CERN plans High-Luminosity LHC
→The peak luminosity: x 5
→Current system does not have

enough scaling power
→Some new ideas are necessary

to use data effectively
→Software update
→New devices: GPGPU, FPGA, (QC)
→New grid structure: Data Cloud
→External resources: HPC, Commercial cloud

4

Year

2018 2020 2022 2024 2026 2028 2030 2032

An
nu

al
 C

PU
 C

on
su

m
pt

io
n

[M
H

S0
6]

0

20

40

60

80

100

Run 2 Run 3 Run 4 Run 5

CPU resource needs
2017 Computing model

2018 estimates:
MC fast calo sim + standard reco
MC fast calo sim + fast reco
Generators speed up x2

Flat budget model
(+20%/year)

ATLAS Preliminary

The Tokyo regional analysis center
• The computing center at ICEPP, the University of Tokyo
• Supports ATLAS VO as one of the WLCG Tier2 sites
→Provides local resources to the ATLAS Japan group, too
• All hardware devices are supplied by the three years rental
• Current system (Starting from Jan/2019):
→Worker node: 10,752cores (HS06: 18.97/core)

(7,680 for WLCG, 145689.6 HS06*cores),
3.0GB/core

→File server: 15,840TB,
(10,560TB for WLCG)

5

Tape library

Disk storage

Worker node
~270m2

The Tokyo regional analysis center
• The computing center at ICEPP, the University of Tokyo
• Supports ATLAS VO as one of the WLCG Tier2 sites
→Provides local resources to the ATLAS Japan group, too
• All hardware devices are supplied by the three years rental
• Current system (Starting from Jan/2019):
→Worker node: 10,752cores (HS06: 18.97/core)

(7,680 for WLCG, 145689.6 HS06*cores),
3.0GB/core

→File server: 15,840TB,
(10,560TB for WLCG)

6

TOKYO-LCG2 provides
6% of Tier 2

Tier 2 Grid Accounting (Jan-Mar 2019)

Commercial Cloud
• Google Cloud Platform (GCP)
→Number of vCPU, Memory are customizable
→CPU is almost uniform:
→At TOKYO region, only Intel Broadwell (2.20GHz) or Skylake (2.00GHZ)

can be selected (they show almost same performances)
→Hyper threading on
• Amazon Web Service (AWS)
→Different types (CPU/Memory) of machines

are available
→Hyper threading on
→HTCondor supports AWS resource management from 8.8
• Microsoft Azure
→Different types (CPU/Memory) of machines

are available
→Hyper threading off machines are available

7

• HT On
→ All Google Computing Element (GCE) at GCP are HT On
→ TOKYO system is HT off

Google Computing Element

→ Broadwell and Skylake show similar specs
→ Costs are same. But if instances are restricted to Skylake, instances will be preempted more
→ Better not to restrict CPU generation for preemptible instances

→ GCE spec is ~half of TOKYO system

• Preemptible Instance
→ Shut down every 24 hours
→ Could be shut down before 24 hours depending on the system condition
→ The cost is ~1/3

8

System Core(vCPU) CPU SPECInt/core HEPSPEC ATLAS simulation
1000events (hours)

TOKYO system: HT off 32 Intel(R) Xeon(R) Gold 6130
CPU @ 2.10GHz 46.25 18.97 5.19

TOKYO system: HT on 64 Intel(R) Xeon(R) Gold 6130
CPU @ 2.10GHz N/A 11.58 8.64

GCE (Broadwell) 8 Intel(R) Xeon(R) CPU E5-
2630 v4 @ 2.20GHz (39.75) 12.31 9.32

GCE (Broadwell) 1 Intel(R) Xeon(R) CPU E5-
2630 v4 @ 2.20GHz (39.75) 22.73 N/A

GCE (Skylake) 8 Intel(R) Xeon(R) Gold 6138
CPU @ 2.00GHz (43.25) 12.62 9.27

• SPECInt (SPECint_rate2006):
• Local system: Dell Inc. PowerEdge M640
• GCE(Google Compute Engine)’s value were taken from Dell system with same corresponding CPU
• GCE (Broadwell): Dell Inc PowerEdge R630
• GCE (Skylake): Dell Inc. PowerEdge M640

• ATLAS simulation: Multi process job 8 processes
• For 32 and 64 core machine, 4 and 8 parallel jobs were run to fill cores, respectively

Current Our System

9

The Tokyo regional analysis center

CEATLAS
Central

Panda

Tasks
submitted through
WLCG system

ARC

Task
Queues

HTCondor
Sched

SE

Storage

Worker node

• Panda: ATLAS job management system,
using WLCG framework

• ARC-CE: Grid front-end
• HTCondor: Job scheduler

Hybrid System

10

The Tokyo regional analysis center

CEATLAS
Central

Panda ARC

Task
Queues

HTCondor
Sched

SE

Storage

Worker node

Tasks
submitted through
WLCG system

• Some servers need certifications for WLCG
→There is a political issue to deploy such servers on cloud

→No clear discussions have been done for the policy of such a case
• Cost of storage is high

→Additional cost to extract data
• Only worker nodes (and some supporting servers) were

deployed on cloud, and other services are in on-premises
→Hybrid system

On-premises

Cost Estimation

11

Job
Manager

Storage Worker node

Job
Manager

Storage Worker node

On-premises

Job
Manager

Storage

Worker node

Full on-premises system Full cloud system Hybrid System

Data export to other sites

• For GCP, use 20k to have comparable spec
→ Use Preemptible Instance

• 8PB storage which is used at ICEPP for now
• Cost to export data from GCP

https://cloud.google.com/compute/pricing
https://cloud.google.com/storage/pricing

• Estimated with Dell machines
• 10k cores, 3GB/core memory,

35GB/core disk: $5M
• 16PB storage: $1M
• Power cost: $20k/month

→ For 3 years usage: ~$200k/month
(+Facility/Infrastructure cost,
Hardware Maintenance cost, etc…)

https://cloud.google.com/compute/pricing
https://cloud.google.com/storage/pricing

On-premises

Cost Estimation

12

Job
Manager

Storage Worker node

Job
Manager

Storage Worker node

On-premises

Job
Manager

Storage

Worker node

Full on-premises system Hybrid System

Resource Cost/month
vCPU x20k $130k
3GB x20k $52k
Local Disk 35GBx20k $28k
Storage 8PB $184k
Network
Storage to Outside
600 TB

$86k

Resource Cost/month
vCPU x20k $130k
3GB x20k $52k
Local Disk 35GBx20k $28k
Network
GCP WN to ICEPP Storage
300 TB

$43k

Total cost: $243k/month
+ on-premises costs
(storage $30k/month + others)

Total cost: $480k/month

Data export to other sites

• Estimated with Dell machines
• 10k cores, 3GB/core memory,

35GB/core disk: $5M
• 16PB storage: $1M
• Power cost: $20k/month

→ For 3 years usage: ~$200k/month
(+Facility/Infrastructure cost,
Hardware Maintenance cost, etc…)

Full cloud system

Technical Points on HTCndor with GCP
• No swap is prepared as default:
→ No API option is available, need to make swap by a startup script

• Memory must be 256MB x N
• yum-cron is installed and enabled by default
→ Better to disable to manage packages (and for performance)

• Preemptible machine
→ The cost is ~1/3 of the normal instance
→ It is stopped after 24 h running
→ It can be stopped even before 24 h by GCP (depends on total system usage)
→ Better to run only 1 job for 1 instance

• Instances are under VPN
→ They don’t know own external IP address
→ Use HTCndor Connection Brokering (CCB)
→ CCB_ADDRESS = $(COLLECTOR_HOST)

• Instance’s external address is changed every time it is started
→ Static IP address is available, but it needs additional cost
→ To manage worker node instance on GCP, a management tool has been developed:
→ Google Cloud Platform Condor Pool Manager (GCPM)

13

Google Cloud Platform Condor Pool Manager
• https://github.com/mickaneda/gcpm

→ Can be installed by pip:
→ $ pip install gcpm

• Manage GCP resources and HTCondor’s worker node list

14

On-premises

CE

Worker node

Compute

Engine

Create/Delete

(Start/Stop)

Task

Queues

HTCondor

Sched

GCPM

Check

queue status

Job Submission

Cloud

Storage

pool_password

SQUID

(for CVMFS)

Compute

Engine
Prepare before starting WNs

Update

WN list

https://github.com/mickaneda/gcpm

Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine

15

On-premises

CE

Worker node

Compute

Engine

Create/Delete

(Start/Stop)

Task

Queues

HTCondor

Sched

GCPM

Check

queue status

Job Submission

Cloud

Storage

pool_password

SQUID

(for CVMFS)

Compute

Engine
Prepare before starting WNs

Update

WN list

Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine

16

On-premises

CE

Worker node

Compute

Engine

Create/Delete

(Start/Stop)

Task

Queues

HTCondor

Sched

GCPM

Check

queue status

Job Submission

Cloud

Storage

pool_password

SQUID

(for CVMFS)

Compute

Engine
Prepare before starting WNs

Update

WN list

pool_password file
for the authentication
is taken from storage
by startup script

Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine

17

On-premises

CE

Worker node
Compute
Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCP

Check
queue status

Job Submission

Cloud
Storage

pool_password

SQUID
(for CVMFS)
Compute
EnginePrepare before starting WNs

Update
WN list

Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine

18

On-premises

CE

Worker node
Compute
Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCP

Check
queue status

Job Submission

Cloud
Storage

pool_password

SQUID
(for CVMFS)
Compute
EnginePrepare before starting WNs

Update
WN list

Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine

19

On-premises

CE

Worker node
Compute
Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCP

Check
queue status

Job Submission

Cloud
Storage

pool_password

SQUID
(for CVMFS)
Compute
EnginePrepare before starting WNs

Update
WN list

• Set to execute `condor_off -peacefull –startd` after 10min by the startup script
for GCE instance

• When a job finished, the instance is removed from `condor_status` list
• Then GCPM deletes (sotps) the instance

ARC CE Hacking
• ARC checks a number of available slots before submitting jobs
→ If a job specifies a number of CPUs and there are not enough slots, job

submission fails
→GCP pool has no slot at the start, jobs cannot be submitted
→Hack /usr/share/arc/Condor.pm to return non-zero cpus if it is zero

20

#
returns the total number of nodes in the cluster
#
sub condor_cluster_totalcpus() {

List all machines in the pool. Create a hash specifying the
TotalCpus

for each machine.
my %machines;
$machines{$$_{machine}} = $$_{totalcpus} for @allnodedata;

my $totalcpus = 0;
for (keys %machines) {

$totalcpus += $machines{$_};
}

Give non-zero cpus for dynamic pool
$totalcpus ||= 100;
return $totalcpus;

}

System for R&D

21

The Tokyo regional analysis center

CE
Worker node
Compute
Engine

Create/Delete
(Start/Stop)

ATLAS
Central

Panda

Production/Analysis
tasks

SQUID
(for CVMFS)
Compute
Engine

ARC

Task
Queues

HTCondor
Sched

GCPM

Check
queue status

Job Submission

SE

Storage

Authorization

ARGUS

Stackdriver

Log (condor logs)
by fluentd

SQUID
(for Condition DB)

Compute
Engine

BDII

Site-BDII

Site Information

Xcache
Compute
Engine

Prepare before starting WNs

Required
machines

Cloud
Storage

pool_password

Update
WN list

GCE Instance limit for R&D
• 1 vCPU instances: Memoery 2.6GB, Disk 50GB, max 200 instances
• 8 vCPU instances: Memory 19.2GB, Disk 150GB, max 100 instances
→ Total vCPU max: 1000

Jobs Running on GCP

22

Analysis job: 1core idle
Production job: 8cores idle
Analysis job: 1core running
Production job: 8cores running

Number of jobs Number of vCPUs

Analysis job: 1core
Production job: 1core
Production job: 8cores

Monitors of job starting time

HTCondor status monitor

vC
PU

s

1.0k

2.0k

0

Analysis job: 1core
Production job: 1core
Production job: 8cores

1 Day Real Cost

23

Hybrid system: 1k cores, 2.4GB/core memory
→ Cost for month (x30), with 20k cores (x20): ~$240k + on-premises costs

Worker node

On-premises

Job
Manager

Storage

Usage Cost/day x30x20
vCPU (vCPU*hours) 20046 $177 $106k
Memory (GB*hours) 47581 $56 $34k
Disk (GB*hours) 644898 $50 $30k
Network (GB) 559 $78 $47k
Other services $30 $18k
Total $391 $236k

vCPU: 1vCPU instances max 200, 8 vCPUs instances max 100
Memory: 2.4 GB/vCPU
Disk: 50GB for 1vCPU instance, 150 GB for 8 vCPUs instance

Resource Cost/month
vCPU x20k $130k
3GB x20k $42k
Local Disk 35GBx20k $28k
Network
GCP WN to ICEPP Storage
300 TB

$43k

Total $243k

1 Day Real Cost (13/Feb)
Cost Estimation

Failure Rate (Production Jobs)

24

Succeeded
Failed

GCP Worker Nodes
(Production Job)

ICEPP Worker Nodes
(Production Job)

Job Type Error rate
GCP Production (Preemptible) 35%
GCP Production (Non-Preemptible) 6%
Local Production 11%

Succeeded
Failed

Mainly 8 core jobs, long jobs (~10 hours/job)

Failure Rate (Analysis Jobs)

25

Succeeded
Failed

GCP Worker Nodes
(Analysis Job)

ICEPP Worker Nodes
(Analysis Job)

Job Type Error rate
GCP Analysis (Preemptible) 19%
GCP Analysis (Non-Preemptible) 14%
Local Analysis 8%

Succeeded
Failed

Only 1 core job, shorter jobs

Preemption

26

Not Preempted
Preempted

Not preempted
Preempted

1 core instances 8 core instances

Preemption v.s. Failure jobs

27

Not Preempted
Preempted

Not preempted
Preempted

• 5~30 % instances were shut down by Preemption
→Made failure jobs
• Typically shut down around 3~10 hours
→Some instances were shutdown before 1 hours running
• More preemptions in 8 core jobs (production: reco/sim)

because job running times are longer

Summary
• The cost of GCP is reasonable
→Same order compared with on-premises, if preemptible

instances are used

• Hybrid system with GCPM works on the ATLAS Production
System in WLCG
→HTCondor+GCPM can work for small clusters, too,

in which CPUs are always not fully used
→You need to pay only for what you used

• Failure due to preemptible instances
→10~30% higher rates compared to jobs in the local nodes
→The cost performance is still better to use preemptible instances

→Shorter jobs are less affected
28

Plan
• Dynamic Memory Assignment

• Use AWS, Azure, IBM
→HTCondor natively supports

AWS worker nodes (condor_annex)

• Non-CPU pools
→GPU, FPGA(AWS),

TPU (GCP), Inferenita (AWS), Brainwave(Azure)
→HPC

29

0 5000 10000 15000 20000 25000 30000
Memory [MB]

0

1000

2000

3000

4000

5000Jo
bs

Required memory for 8 core jobs

Backup

30

On-premises

Cost Estimation

31

Job
Manager

Storage Worker node

Job
Manager

Storage Worker node

On-premises

Job
Manager

Storage

Worker node

Full on-premises system Full on-premises system Hybrid System

Data export to other sites

V
o
lu
m
e
	(
B
)

Transfer	Volume
2018-01-01	00:00	to	2018-12-31	00:00	UTC

CA CERN DE ES FR IT ND NL RU TW UK US

Destinations

2
0
18
-0
1

2
0
18
-0
2

2
0
18
-0
3

2
0
18
-0
4

2
0
18
-0
5

2
0
18
-0
6

2
0
18
-0
7

2
0
18
-0
8

2
0
18
-0
9

2
0
18
-1
0

2
0
18
-1
1

2
0
18
-1
2

0T

1,000T

250T

500T

750T

~600TB/month

~184TB/month (for 6k core)
→ 300TB/month for 10k core• Estimated with Dell machines

• 10k cores, 3GB/core memory,
35GB/core disk: $5M

• 16PB storage: $1M
• Power cost: $20k/month

→ For 3 years usage: ~$200k/month
(+Facility/Infrastructure cost,
Hardware Maintenance cost, etc…)

Output file size fluctuation

32

Usage Cost/day x30x20
vCPU (vCPU*hours) 20046 $177 $106k
Memory (GB*hours) 47581 $56 $34k
Disk (GB*hours) 644898 $50 $30k
Network (GB) 559 $78 $47k
Other services $30 $18k
Total $391 $236k

1 Day Real Cost (13/Feb)
Usage Cost/day x30x20

vCPU (vCPU*hours) 21974 $194 $116k
Memory (GB*hours) 52014 $61 $37k
Disk (GB*hours) 569081 $44 $26k
Network (GB) 1713 $239 $143k
Other services $28 $17k
Total $566 $340k

1 Day Real Cost (15/Feb)

Sum of output file size shows large fluctuation
→ Sometimes it becomes ~x5

~170TB/month (for 6k core)
→ 480GB/day/500 core (~1k core@GCP)

GCP R&D (10/Feb~20/Feb) TOKYO site (last year)

Required Memory

33

Production 1 core

0 500 1000 1500 2000 2500 3000
Memory [MB]

0

500

1000

1500

2000

2500

3000

3500

Jo
bs

0 5000 10000 15000 20000 25000 30000
Memory [MB]

0

1000

2000

3000

4000

5000Jo
bs

Production 8 cores

0 500 1000 1500 2000 2500 3000
Memory [MB]

0

10000

20000

30000

40000

50000Jo
bs

Some 2.5GB memory jobs

Analysis 1 core

This includes MCORE_HIMEM queue jobs
Multicore jobs requires smaller memory
Even MCORE_HIMEM jobs requires less than 2GB/core?

Extracted from jobs to TOKYO_SL7 and ANALY_TOKYO_SL7
TOKYO site has MCORE_HIMEM queue

MCORE_HIMEM Job Example

34

https://bigpanda.cern.ch/job?pandaid=4288126400

https://bigpanda.cern.ch/job?pandaid=4288126400

Payment
• A payment to GCP is done by Credit Card (or through

Bank in some countries) as a late payment
→Our institute system doesn’t allow such a payment
→Only pre-payed, fixed price
• To make such a payment, we use a payment agency
→There are a lot of agencies in Japan, maybe in other

countries, too
• There are some differences in the prices between the

(our) agency and GCP direct payment
→No Sustained Use Discount (up to 60% discount) neither

Committed Use Discounts (50%~70%) is applied
→Preemptible discount (~1/3 cost) is same as direct
→Original discount (~a few %?) is applied

35

Failure Rate (Non-Preemptible)

36

Succeeded
Failed

GCP Worker Nodes
(Production Job)

Succeeded
Failed

GCP Worker Nodes
(Analysis Job)

Failure Rate (Wall time)

37

Succeeded
Failed

GCP Worker Nodes
(Production Job)

ICEPP Worker Nodes
(Production Job)

Succeeded
Failed

Failure Rate (Wall time)

38

Succeeded
Failed

GCP Worker Nodes
(Analysis Job)

ICEPP Worker Nodes
(Analysis Job)

Succeeded
Failed

Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine

39

On-premises

CE

Worker node
Compute
Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCP condor pool
manager

Check
queue status

Job Submission

Cloud
Storage

pool_password

SQUID
(for CVMFS)
Compute
EnginePrepare before starting WNs

Update
WN list

Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine

40

On-premises

CE

Worker node
Compute
Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCP condor pool
manager

Check
queue status

Job Submission

Cloud
Storage

pool_password

SQUID
(for CVMFS)
Compute
EnginePrepare before starting WNs

Update
WN list

pool_password file
for the authentication
is taken from storage
by startup script

Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine

41

On-premises

CE

Worker node
Compute
Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCP condor pool
manager

Check
queue status

Job Submission

Cloud
Storage

pool_password

SQUID
(for CVMFS)
Compute
EnginePrepare before starting WNs

Update
WN list

Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine

42

On-premises

CE

Worker node
Compute
Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCP condor pool
manager

Check
queue status

Job Submission

Cloud
Storage

pool_password

SQUID
(for CVMFS)
Compute
EnginePrepare before starting WNs

Update
WN list

Google Cloud Platform Condor Pool Manager
• Run on HTCondor head machine

→Prepare necessary machines before starting worker nodes
→Create (start) new instance if idle jobs exist
→Update WN list of HTCondor
→Job submitted by HTCondor
→ Instance’s HTCondor startd will be stopped at 10min after starting

→ ~ only 1 job runs on instance, and it is deleted by GCPM
→ Effective usage of preemptible machine

43

On-premises

CE

Worker node
Compute
Engine

Create/Delete
(Start/Stop)

Task
Queues

HTCondor
Sched

GCP condor pool
manager

Check
queue status

Job Submission

Cloud
Storage

pool_password

SQUID
(for CVMFS)
Compute
EnginePrepare before starting WNs

Update
WN list

• Set to execute `condor_off -peacefull –startd` after 10min by the startup script
for GCE instance

• When a job finished, the instance is removed from `condor_status` list
• Then GCPM deletes (sotps) the instance

Other Features of GCPM
• Configuration files:
→YAML format

• Machine options are fully customizable
• Can handle instances with different number of cores
• Max core in total, max instances for each number of cores
• Management of other than GCE worker nodes
→ Static worker nodes
→ Required machines
→ Working as an orchestration tool

• Test account
• Preemptible or not
• Reuse instances or not
• Pool_password file management
• Puppet files are available for
→GCPM set
→Example worker node/head node for GCPM
→Example frontier squid proxy server at GCP

44

Evicted Jobs
• Some of failed jobs’ Panda log show an error like:
→already running elsewhere - aborting
• At condor logs, these jobs were evicted and resubmitted:
→ShadowLog:
12/14/18 11:03:22 (10186.0) (2279157): Job 10186.0 is being evicted from gcp-wn-8core-0008.c.grid-test-204503.internal

• Panda system can not manage such a case
→Because the first connection was not closed correctly and is remained

• Such eviction happens in our local worker nodes
→But very small rate (< 1%)
• It could be connectability between Head node and WN node
→Preemption can make it
→Some non-preempted instance also showed it
→Could be failing to extract preempted flag?

45

Develop Environment for Python-GCPM

46

GitHub

Travis CI

Local Machine

The Python Package Index (PyPI)
($ pip install gcpm)

Package manager: Poetry
CLI: made with python-fire
License: Apache 2.0

Tests by pytest
On Ubuntu Xenial
For python 2.7, 3.5, 3.6, 3.7

pytest-cov result
(in gh-pages branch)

Secret files are encrypted by git-crypt
travis encrypt-file is also used for travis job
(service account file for gcp, etc…)

https://github.com/mickaneda/gcpm
https://travis-ci.org/mickaneda/gcpm
https://pypi.org/project/gcpm/
https://github.com/sdispater/poetry
https://github.com/google/python-fire
https://www.apache.org/licenses/LICENSE-2.0
https://docs.pytest.org/en/latest/
https://github.com/pytest-dev/pytest-cov
https://mickaneda.github.io/gcpm/
https://github.com/AGWA/git-crypt
https://docs.travis-ci.com/user/encrypting-files/

Develop Environment for Python-GCPM

47

GitHub

Travis CI

Local Machine

The Python Package Index (PyPI)
($ pip install gcpm)

Package manager: Poetry
CLI: made with python-fire
License: Apache 2.0

Tests by pytest
On Ubuntu Xenial
For python 2.7, 3.5, 3.6, 3.7

Secret files are encrypted by git-crypt
travis encrypt-file is also used for travis job
(service account file for gcp, etc…)

gcpm
|--|-- pyproject.toml

|-- src
| |-- gcpm
| | |-- __init__.py
| | |-- __main__.py
| | |-- __version__.py
| | |-- cli.py
| | |-- core.py
|-- tests
| |-- __init__.py
| |-- conftest.py
| |-- data
| | |-- gcpm.yml
| | |-- service_account.json
| |-- test_cli.py

Package manager: Poetry
Directory Structure

• Package initialization
• Management of package dependencies
• Build & Publish to PyPi
• Automatic virtualenv management
• Easy to make CLI tool

$ poetry init # Initialize package
$ poetry add fire # Add fire to dependencies
$ poetry run gcpm version # Run gcpm in virtualenv
$ poetry run pytest # Run pytest in virtualenv
$ poetry publish –build # Build and publsh to PyPi

https://github.com/mickaneda/gcpm
https://travis-ci.org/mickaneda/gcpm
https://pypi.org/project/gcpm/
https://github.com/sdispater/poetry
https://github.com/google/python-fire
https://www.apache.org/licenses/LICENSE-2.0
https://docs.pytest.org/en/latest/
https://github.com/AGWA/git-crypt
https://docs.travis-ci.com/user/encrypting-files/
https://github.com/sdispater/poetry

Develop Environment for Python-GCPM

48

GitHub

Travis CI

Local Machine

The Python Package Index (PyPI)
($ pip install gcpm)

Package manager: Poetry
CLI: made with python-fire
License: Apache 2.0

Tests by pytest
On Ubuntu Xenial
For python 2.7, 3.5, 3.6, 3.7

pytest-cov result
(in gh-pages branch)

Secret files are encrypted by git-crypt
travis encrypt-file is also used for travis job
(service account file for gcp, etc…)

CLI: made with python-fire

• Library for automatically
generating CLI from absolutely
any Python object

from .core import Gcpm
import fire

class CliObject(object):

def __init__(self, config=""):
self.config = config

def version(self):
Gcpm.version()

def run(self):
Gcpm(config=self.config).run()

def cli():
fire.Fire(CliObject)

if __name__ == "__main__":
cli()

$ gcpm version
gcpm: 0.2.0
$ gcpm –-config /path/to/config run
Starting gcpm
…

https://github.com/mickaneda/gcpm
https://travis-ci.org/mickaneda/gcpm
https://pypi.org/project/gcpm/
https://github.com/sdispater/poetry
https://github.com/google/python-fire
https://www.apache.org/licenses/LICENSE-2.0
https://docs.pytest.org/en/latest/
https://github.com/pytest-dev/pytest-cov
https://mickaneda.github.io/gcpm/
https://github.com/AGWA/git-crypt
https://docs.travis-ci.com/user/encrypting-files/
https://github.com/google/python-fire

Develop Environment for Python-GCPM

49

GitHub

Travis CI

Local Machine

The Python Package Index (PyPI)
($ pip install gcpm)

Package manager: Poetry
CLI: made with python-fire
License: Apache 2.0

Tests by pytest
On Ubuntu Xenial
For python 2.7, 3.5, 3.6, 3.7

pytest-cov result
(in gh-pages branch)

Secret files are encrypted by git-crypt
travis encrypt-file is also used for travis job
(service account file for gcp, etc…)

Source code at: GitHub

• Open source
• License: Apache 2.0

• Automatic test/build on Travis CI at push

https://github.com/mickaneda/gcpm
https://travis-ci.org/mickaneda/gcpm
https://pypi.org/project/gcpm/
https://github.com/sdispater/poetry
https://github.com/google/python-fire
https://www.apache.org/licenses/LICENSE-2.0
https://docs.pytest.org/en/latest/
https://github.com/pytest-dev/pytest-cov
https://mickaneda.github.io/gcpm/
https://github.com/AGWA/git-crypt
https://docs.travis-ci.com/user/encrypting-files/
https://github.com/mickaneda/gcpm
https://www.apache.org/licenses/LICENSE-2.0
https://travis-ci.org/mickaneda/gcpm

Develop Environment for Python-GCPM

50

GitHub

Travis CI

Local Machine

The Python Package Index (PyPI)
($ pip install gcpm)

Package manager: Poetry
CLI: made with python-fire
License: Apache 2.0

Tests by pytest
On Ubuntu Xenial
For python 2.7, 3.5, 3.6, 3.7

pytest-cov result
(in gh-pages branch)

Secret files are encrypted by git-crypt
travis encrypt-file is also used for travis job
(service account file for gcp, etc…)

Test/Build on Travis CI

• Run pytest for every push
• Tested with python2.7, 3.4, 3.5, 3.6 and 3.7-dev
• Build & publish to PyPi after test on Tag may be

useful (not implemented)

https://github.com/mickaneda/gcpm
https://travis-ci.org/mickaneda/gcpm
https://pypi.org/project/gcpm/
https://github.com/sdispater/poetry
https://github.com/google/python-fire
https://www.apache.org/licenses/LICENSE-2.0
https://docs.pytest.org/en/latest/
https://github.com/pytest-dev/pytest-cov
https://mickaneda.github.io/gcpm/
https://github.com/AGWA/git-crypt
https://docs.travis-ci.com/user/encrypting-files/
https://travis-ci.org/mickaneda/gcpm

Develop Environment for Python-GCPM

51

GitHub

Travis CI

Local Machine

The Python Package Index (PyPI)
($ pip install gcpm)

Package manager: Poetry
CLI: made with python-fire
License: Apache 2.0

Tests by pytest
On Ubuntu Xenial
For python 2.7, 3.5, 3.6, 3.7

pytest-cov result
(in gh-pages branch)

Secret files are encrypted by git-crypt
travis encrypt-file is also used for travis job
(service account file for gcp, etc…)

pytest-cov result in gh-pages branch
• Test coverage is measured by pytest-cov
• There result is published in gh-pages of gcpm

repository at GitHub

https://github.com/mickaneda/gcpm
https://travis-ci.org/mickaneda/gcpm
https://pypi.org/project/gcpm/
https://github.com/sdispater/poetry
https://github.com/google/python-fire
https://www.apache.org/licenses/LICENSE-2.0
https://docs.pytest.org/en/latest/
https://github.com/pytest-dev/pytest-cov
https://mickaneda.github.io/gcpm/
https://github.com/AGWA/git-crypt
https://docs.travis-ci.com/user/encrypting-files/
https://github.com/pytest-dev/pytest-cov
https://mickaneda.github.io/gcpm/

Develop Environment for Python-GCPM

52

GitHub

Travis CI

Local Machine

The Python Package Index (PyPI)
($ pip install gcpm)

Package manager: Poetry
CLI: made with python-fire
License: Apache 2.0

Tests by pytest
On Ubuntu Xenial
For python 2.7, 3.5, 3.6, 3.7

pytest-cov result
(in gh-pages branch)

Secret files are encrypted by git-crypt
travis encrypt-file is also used for travis job
(service account file for gcp, etc…)

Published on the Python Package Index (PyPI)

$ pip install gcpm

https://github.com/mickaneda/gcpm
https://travis-ci.org/mickaneda/gcpm
https://pypi.org/project/gcpm/
https://github.com/sdispater/poetry
https://github.com/google/python-fire
https://www.apache.org/licenses/LICENSE-2.0
https://docs.pytest.org/en/latest/
https://github.com/pytest-dev/pytest-cov
https://mickaneda.github.io/gcpm/
https://github.com/AGWA/git-crypt
https://docs.travis-ci.com/user/encrypting-files/
https://pypi.org/project/gcpm/

